test_recurrent_op.py 21.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yan Chunwei 已提交
17
import unittest
18
import paddle
C
chengduo 已提交
19
import paddle.fluid as fluid
20
import paddle.fluid.layers as layers
21 22 23 24
import numpy as np
import paddle.fluid.core as core

from paddle.fluid import ParamAttr
25 26 27
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
S
fix res  
superjom 已提交
28

29 30
np.random.seed(123)

S
fix res  
superjom 已提交
31

Y
Yu Yang 已提交
32
class PyRNNBase(object):
33

Y
Yu Yang 已提交
34 35 36
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
37

38 39
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
40 41 42

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
43 44
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
45 46 47 48

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
49 50

class PySimpleRNN1(PyRNNBase):
51

Y
Yu Yang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
73

Y
Yu Yang 已提交
74 75 76 77
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
78 79
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
80 81 82 83
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
84 85 86

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
87
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
88 89
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
90 91
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
92

Y
Yu Yang 已提交
93 94
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
95

Y
Yu Yang 已提交
96 97
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
98 99


Y
Yu Yang 已提交
100 101 102
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
103 104 105
    return tensor


Y
Yu Yang 已提交
106
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
107 108 109
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
110
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
111 112 113 114 115
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
116
        - h
Y
Yan Chunwei 已提交
117 118
    '''

Y
Yu Yang 已提交
119 120 121 122
    input_dim = 2
    batch_size = 1
    sent_len = 1

123 124 125
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
126
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
127

S
superjom 已提交
128
    def setUp(self):
129
        self.setup_program()
130 131
        self.feed_data_field = {"x", "h_boot"}
        self.grad_data_field = self.feed_data_field
Y
Yan Chunwei 已提交
132

Y
Yu Yang 已提交
133 134 135 136
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
137
        with fluid.program_guard(self.main_program, self.startup_program):
138
            self.output = paddle.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
139 140

    def create_rnn_op(self):
141 142 143 144
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
Y
Yu Yang 已提交
145
        x.stop_gradient = False
146 147 148
        h_boot = layers.data(shape=[self.input_dim],
                             dtype='float32',
                             name='h_boot')
Y
Yu Yang 已提交
149
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
150

C
chengduo 已提交
151
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
152 153 154 155
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

156 157
            h = layers.scale(x=layers.elementwise_add(x=h_pre, y=x_t),
                             scale=self.py_rnn.scale)
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
167
            for x in self.feed_data_field
Y
Yu Yang 已提交
168 169
        }
        exe = Executor(self.place)
170
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
171 172 173
                      feed=self.feed_map,
                      fetch_list=[self.output])

D
dzhwinter 已提交
174
        return out[0]
Y
Yu Yang 已提交
175 176 177 178

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
179
            for x in self.feed_data_field
Y
Yu Yang 已提交
180 181
        }
        fetch_list = [
Q
qiaolongfei 已提交
182
            self.main_program.global_block().var(grad_var_name(x))
183
            for x in self.grad_data_field
Y
Yu Yang 已提交
184 185 186
        ]

        exe = Executor(self.place)
187 188
        return exe.run(self.main_program,
                       feed=self.feed_map,
D
dzhwinter 已提交
189 190
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yu Yang 已提交
191

192
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
193 194
        self.check_forward()

C
chengduo 已提交
195 196
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
197 198 199 200

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
201
        for idx, name in enumerate(self.grad_data_field):
Y
Yu Yang 已提交
202 203
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
204
                np.isclose(num_grad[idx], ana_grad[idx], rtol=rtol).all(),
C
chengduo 已提交
205 206 207
                "num_grad (" + name + ") has diff at " + str(self.place) +
                "\nExpect " + str(num_grad[idx]) + "\n" + "But Got" +
                str(ana_grad[idx]) + " in class " + self.__class__.__name__)
Y
Yu Yang 已提交
208 209

    def check_forward(self):
S
superjom 已提交
210 211 212
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
213
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.01).all())
Y
Yan Chunwei 已提交
214

Y
Yu Yang 已提交
215 216
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
217
        feed_list = [getattr(self.py_rnn, x) for x in self.grad_data_field]
Y
Yu Yang 已提交
218 219 220 221 222 223
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
224

Y
Yu Yang 已提交
225 226 227 228 229 230 231 232 233 234 235
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
236
    r'''
Y
Yu Yang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
256
        self.setup_program()
Y
Yu Yang 已提交
257

258 259
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
260 261 262 263 264

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
265
        with fluid.program_guard(self.main_program, self.startup_program):
266
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
267 268

    def create_rnn_op(self):
269 270 271 272
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
Y
Yu Yang 已提交
273
        x.stop_gradient = False
274 275 276
        h_boot = layers.data(shape=[self.input_dim],
                             dtype='float32',
                             name='h_boot')
Y
Yu Yang 已提交
277
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
278

C
chengduo 已提交
279
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
280 281 282 283
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

284 285 286 287 288 289 290 291 292 293 294 295 296 297
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)
298

C
chengduo 已提交
299
            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))
Y
Yu Yang 已提交
300 301 302 303 304 305

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
306
    def test_backward(self):
307
        super(RecurrentOpTest2, self).test_backward(rtol=0.01)
C
chengduo 已提交
308

Y
Yu Yang 已提交
309

310
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
326

Y
Yu Yang 已提交
327
        def __init__(self, input_shape, output_shape):
328 329
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3,
                  self).__init__(input_shape, output_shape)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
357
        self.setup_program()
Y
Yu Yang 已提交
358

359 360
        self.feed_data_field = {"x", "h_boot1", "h_boot2"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
361 362 363

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
364 365
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
366

C
chengduo 已提交
367
        with fluid.program_guard(self.main_program, self.startup_program):
368
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
369 370

    def create_rnn_op(self):
371 372 373 374
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
Y
Yu Yang 已提交
375
        x.stop_gradient = False
376 377 378 379
        h_boot1 = layers.data(shape=[self.batch_size, self.input_dim],
                              dtype='float32',
                              name='h_boot1',
                              append_batch_size=False)
Y
Yu Yang 已提交
380
        h_boot1.stop_gradient = False
381 382 383 384
        h_boot2 = layers.data(shape=[self.batch_size, self.input_dim],
                              dtype='float32',
                              name='h_boot2',
                              append_batch_size=False)
Y
Yu Yang 已提交
385
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
386

C
chengduo 已提交
387
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
388 389 390 391 392
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

C
chengduo 已提交
393 394 395
            mem1 = layers.scale(x=h_pre1, scale=1.0)
            mem2 = layers.scale(x=h_pre2, scale=1.0)
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
396 397 398 399 400 401

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
402 403


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
419

420
        def __init__(self, input_shape, output_shape):
421 422
            super(RecurrentOpNoMemBootTest.PySimpleRNN4,
                  self).__init__(input_shape, output_shape)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

441 442
        self.feed_data_field = {"x"}
        self.grad_data_field = self.feed_data_field
443 444 445

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
446 447
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(
            self.input_shape, self.output_shape)
C
chengduo 已提交
448 449

        with fluid.program_guard(self.main_program, self.startup_program):
450
            self.output = paddle.mean(self.create_rnn_op())
451 452

    def create_rnn_op(self):
453 454 455 456
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
457 458
        x.stop_gradient = False

C
chengduo 已提交
459
        rnn = layers.StaticRNN()
460 461 462
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
463
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
464 465 466 467 468 469
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


470
class RecurrentOpSubBlockTest(RecurrentOpTest1):
471
    r'''
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    Test RNNOp with subblock variable
    equation:
        y_ = emb * w1
        h_t = \concat([x, h_{t-1}])
        h_t = h_t * w2
        h_t = \\unsqueeze(h_t, 1)
        h_t = \dot_attention(h_t, y_)
        h_t = \squeeze(h_t, 1)
        y = h_t
    vars:
        - x
        - w1
        - w2
    memories:
        - h
    outputs:
       - y
    '''

    class PySimpleRNN5(PyRNNBase):
492

493
        def __init__(self, input_shape, output_shape):
494 495
            super(RecurrentOpSubBlockTest.PySimpleRNN5,
                  self).__init__(input_shape, output_shape)
496 497

            seq_len, batch_size, input_dim = input_shape
498 499 500 501 502 503 504 505 506 507 508 509
            self.w1 = np.random.uniform(-0.1, 0.1,
                                        size=(input_dim,
                                              input_dim)).astype("float32")
            self.w2 = np.random.uniform(-0.1,
                                        0.1,
                                        size=(input_dim * 2,
                                              input_dim)).astype("float32")

            self.emb = np.random.uniform(-0.1,
                                         0.1,
                                         size=(seq_len, batch_size,
                                               input_dim)).astype("float32")
510 511 512 513 514 515

            men_dim = (seq_len, batch_size, input_dim)
            self.mems = np.zeros(shape=men_dim).astype("float32")
            self.oy = np.matmul(self.emb, self.w1)

        def step(self, step_id, x):
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
            def dot_attention(query, memory):
                attn = np.matmul(query, memory.transpose((0, 2, 1)))
                weight = softmax(attn)
                weight_memory = np.matmul(weight, memory)
                return weight_memory, weight

            def softmax(x):
                return np.exp(x) / sum(np.exp(x))

            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            concat_in = np.concatenate([x, pre_mem], 1)
            new_mem = np.matmul(concat_in, self.w2)

            new_mem = np.expand_dims(new_mem, 1)
            new_mem, _ = dot_attention(new_mem, self.oy)
            new_mem = np.squeeze(new_mem, 1)

            self.mems[step_id] = new_mem
            self.y[step_id] = self.mems[step_id]

    input_dim = 2
    batch_size = 3
    sent_len = 3

    def setUp(self):
        self.setup_program()

547 548
        self.feed_data_field = {"x", "emb", "w1", "w2"}
        self.grad_data_field = self.feed_data_field
549 550 551

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
552 553
        self.py_rnn = RecurrentOpSubBlockTest.PySimpleRNN5(
            self.input_shape, self.output_shape)
554 555 556

        with fluid.program_guard(self.main_program, self.startup_program):
            rnn_out = self.create_rnn_op()
557
            self.output = paddle.mean(rnn_out)
558 559

    def create_rnn_op(self):
560 561 562 563
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
564 565 566 567 568 569 570 571 572
        x.stop_gradient = False

        emb = layers.data(
            name='emb',
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            append_batch_size=False)
        emb.stop_gradient = False

573 574 575 576
        w1 = layers.data(shape=[self.input_dim, self.input_dim],
                         dtype='float32',
                         name='w1',
                         append_batch_size=False)
577
        w1.stop_gradient = False
578 579 580 581
        w2 = layers.data(shape=[self.input_dim * 2, self.input_dim],
                         dtype='float32',
                         name='w2',
                         append_batch_size=False)
582 583 584 585 586 587 588 589 590 591 592 593 594
        w2.stop_gradient = False

        rnn = layers.StaticRNN()

        def dot_attention(query, memory):
            attn = layers.matmul(query, memory, transpose_y=True)
            weight = layers.softmax(attn)
            weight_memory = layers.matmul(weight, memory)

            return weight_memory, weight

        y = layers.matmul(emb, w1)
        with rnn.step():
595 596 597
            pre_h = rnn.memory(shape=(self.sent_len, self.input_dim),
                               batch_ref=x,
                               init_value=0.0)
598 599 600 601 602 603 604 605 606 607 608 609 610
            step_in = rnn.step_input(x)
            concat_in = layers.concat([step_in, pre_h], 1)
            new_h = layers.matmul(concat_in, w2)
            new_h = layers.unsqueeze(new_h, [1])
            new_h, _ = dot_attention(new_h, y)
            new_h = layers.squeeze(new_h, [1])

            rnn.update_memory(pre_h, new_h)
            rnn.step_output(new_h)

        return rnn()


611
class RecurrentOpStopGradientTest(RecurrentOpTest1):
612
    r"""
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    Test RNNOp with stop_gradient = True
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
	- U
    vars:
        - x
    memories:
        - h
    output:
        - h
    """

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
        self.setup_program()
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = {"x", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
641
            self.output = paddle.mean(self.create_rnn_op())
642 643

    def create_rnn_op(self):
644 645 646 647
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype="float32",
                        name="x",
                        append_batch_size=False)
648
        x.stop_gradient = False
649 650 651
        h_boot = layers.data(shape=[self.input_dim],
                             dtype="float32",
                             name="h_boot")
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        h_boot.stop_gradient = True

        rnn = layers.StaticRNN()
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)  # init doesn't have gradient
            x_t = rnn.step_input(x)

            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="W",
                    initializer=fluid.initializer.ConstantInitializer(1.0)),
                bias_attr=False)
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="U",
                    initializer=fluid.initializer.ConstantInitializer(0.0)),
                bias_attr=False)

            h = layers.sigmoid(x=layers.elementwise_add(temp_l, temp_r))

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


Y
Yan Chunwei 已提交
682 683
if __name__ == '__main__':
    unittest.main()