executor.py 63.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
C
chengduo 已提交
20
import sys
21
import warnings
D
dzhwinter 已提交
22
import numpy as np
S
rename  
sneaxiy 已提交
23
from .wrapped_decorator import signature_safe_contextmanager
24
import six
25
from .data_feeder import convert_dtype
26
from .framework import Program, default_main_program, Variable, Operator, convert_np_dtype_to_dtype_
27
from . import core
28 29
from . import compiler
from .. import compat as cpt
30
from .trainer_factory import TrainerFactory
31
from .trainer_factory import FetchHandlerMonitor
32
import copy
33

T
Tink_Y 已提交
34
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
g_scope = core.Scope()
F
flame 已提交
37 38
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
39

Y
Yu Yang 已提交
40

Y
Yang Yu 已提交
41
def global_scope():
Y
yuyang18 已提交
42 43 44 45
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

C
chengduo 已提交
46 47 48
    Returns:
        Scope: The global/default scope instance.

49 50 51 52 53 54 55 56
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())
Y
yuyang18 已提交
57
    """
Y
Yang Yu 已提交
58 59 60
    return g_scope


61
def _switch_scope(scope):
Y
Yang Yu 已提交
62 63 64 65 66 67
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
68
@signature_safe_contextmanager
Y
Yang Yu 已提交
69
def scope_guard(scope):
Y
yuyang18 已提交
70
    """
71 72 73 74 75 76 77 78 79 80 81 82
    This function switches scope through python `with` statement.
    Scope records the mapping between variable names and variables ( :ref:`api_guide_Variable` ),
    similar to brackets in programming languages.
    If this function is not invoked, all variables and variable names are recorded in the default global scope.
    When users need to create variables with the same name,
    they need to switch scopes through this function
    if they do not want the mapping of variables with the same name to be overwritten.
    After switching through the `with` statement,
    all variables created in the `with` block will be assigned to a new scope.

    Parameters:
        scope: The new scope.
Y
yuyang18 已提交
83

84 85
    Returns:
        None
L
lujun 已提交
86

Y
yuyang18 已提交
87
    Examples:
88 89
        .. code-block:: python

90
            import paddle.fluid as fluid
L
lujun 已提交
91
            import numpy
Y
yuyang18 已提交
92

L
lujun 已提交
93 94 95 96
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
97
    """
L
lujun 已提交
98

99
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
100
    yield
101
    _switch_scope(ex)
Y
Yang Yu 已提交
102 103


D
dzhwinter 已提交
104
def as_numpy(tensor):
105 106 107
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
108

109
    Examples:
110 111 112 113 114 115 116 117 118 119
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
120 121 122 123 124 125 126

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
127 128
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
129 130 131 132
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
133
    if len(lod) > 0:
D
dzhwinter 已提交
134
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
135 136 137
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
138 139 140 141
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
142 143


H
Huihuang Zheng 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
def dtype_is_compatible_with(first, second):
    """
    Returns True if the first dtype can be compatible the second one.
    Currently, we require the two dtype's have to be same.
      
    Args:
        dtype (np.dtype|VarType|str): The type of data: float32, int64, etc.
    
    Returns:
        True if the two types are same.
    """
    if not isinstance(first, core.VarDesc.VarType):
        first = convert_np_dtype_to_dtype_(first)
    if not isinstance(second, core.VarDesc.VarType):
        second = convert_np_dtype_to_dtype_(second)
    return first == second


def dimension_is_compatible_with(first, second):
    """
    Returns True if the two dimensions are compatible.

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
168 169
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
       is compatible with any number.

    Args:
        first (list/tuple): integers representing shape. "None" or negative
            number means unknown.
        second (list/tuple): integers representing shape. "None" or negative
            number means unknown.

    Returns:
        True if the two dimensions are compatible.
    """

    dim_len = len(first)
    if dim_len != len(second):
        return False

    for i in range(dim_len):
        if first[i] is None or first[i] < 0:
            continue
        if second[i] is None or second[i] < 0:
            continue
        if first[i] != second[i]:
            return False

    return True


197
def check_feed_shape_type(var, feed, num_places=1):
H
Huihuang Zheng 已提交
198 199
    """
    Returns True if the variable doesn't require feed check or it is compatible
T
tianshuo78520a 已提交
200
    with the shape and have same dtype as the fed value.
H
Huihuang Zheng 已提交
201 202 203

    A dimension is compatible with the other if:
    1. The length of the dimensions are same.
T
tianshuo78520a 已提交
204 205
    2. Each non-negative number of the two dimensions are same.
    3. For negative number or 'None' in a dimension, it means unknown so it
H
Huihuang Zheng 已提交
206 207 208 209
       is compatible with any number.
    
    Args:
        var (Variable): the Variable object
T
tianshuo78520a 已提交
210
        feed (LoDTensor): the fed value, which must be a LoDTensor
211 212
        num_places: an integer value indicating the number of places.
            ParallelExecutor will divide data into devices (CPU/GPU) evenly.
H
Huihuang Zheng 已提交
213 214 215 216 217 218 219
    Returns:
        True if the shape and dtype of variable is compatible with the feed value
    Raises:
        ValueError: if the shape or dtype of the variable is not compatible with
            the feed value
    """
    if var.desc.need_check_feed():
220 221
        diff_shape = core.diff_tensor_shape(feed, var.desc, num_places)
        if diff_shape is not None:
222
            raise ValueError(
T
tianshuo78520a 已提交
223 224
                'The fed Variable %r should have dimensions = %d, shape = '
                '%r, but received fed shape %r on each device' %
225
                (var.name, len(var.shape), var.shape, diff_shape))
H
Huihuang Zheng 已提交
226
        if not dtype_is_compatible_with(feed._dtype(), var.dtype):
227 228 229 230 231
            var_dtype_format = convert_dtype(var.dtype) if isinstance(
                var.dtype, core.VarDesc.VarType) else var.dtype
            feed_dtype_format = convert_dtype(feed._dtype()) if isinstance(
                feed._dtype(), core.VarDesc.VarType) else feed._dtype()
            raise ValueError(
T
tianshuo78520a 已提交
232 233
                'The data type of fed Variable %r must be %r, but received %r' %
                (var.name, var_dtype_format, feed_dtype_format))
H
Huihuang Zheng 已提交
234 235 236
    return True


237 238 239 240 241 242 243 244 245 246 247 248
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
249 250
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
251 252 253
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
254
        A boolean value that indicates whether a block has feed operators
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
277

278 279 280 281 282 283 284 285 286
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
287 288 289
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
290

X
xuwei06 已提交
291 292 293
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
315
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
316
    """
C
chengduoZH 已提交
317 318 319
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
320
    Args:
321 322 323 324
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
325 326 327 328
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
329 330 331
    Returns:
       LodTensor|numpy.ndarray
    """
332
    assert isinstance(name, six.string_types)
X
xuwei06 已提交
333 334
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
335
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
336

337
    var = scope.find_var(_to_name_str(name))
338 339 340 341
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
342 343 344 345 346 347
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
348
def _to_name_str(var):
349 350 351 352 353 354 355 356
    def _to_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        elif isinstance(var, six.string_types):
            return str(var)
        elif isinstance(var, Operator):
357
            return str(id(var))
358 359 360 361 362 363 364 365 366 367
        else:
            raise TypeError(str(var) + " should be Variable, Operator or str")

    # NOTEz(zhiqiu): The item in fetch_list may be tuple returned by Optimizer.minimize(),
    # see comments in _split_optimize_ops_in_fetch_list for more details.
    if isinstance(var, tuple):
        var = var[0]
    if isinstance(var, list):
        s = [_to_str(item) for item in var]
        return ','.join(s)
X
polish  
Xin Pan 已提交
368
    else:
369
        return _to_str(var)
Q
qiaolongfei 已提交
370 371


372 373 374 375
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
376
def _get_program_cache_key(feed, fetch_list):
377 378 379 380 381 382
    feed_var_names = []
    if isinstance(feed, dict):
        feed_var_names = list(feed.keys())
    elif isinstance(feed, list) or isinstance(feed, tuple):
        for i, each in enumerate(feed):
            feed_var_names += list(each.keys())
X
polish  
Xin Pan 已提交
383
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
384 385 386
    return str(feed_var_names + fetch_var_names)


387
def _as_lodtensor(data, place, dtype=None):
W
Wu Yi 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array
402 403
            data(core.Place): the place of created tensor
            dtype(core.VarDesc.VarType): the expected data type of created tensor
W
Wu Yi 已提交
404 405 406 407 408 409 410 411 412 413

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
414 415 416 417 418 419 420 421 422

    #NOTE(zhiqiu): convert python builtin ,like float and int, to numpy array
    if not isinstance(data, np.ndarray):
        if np.isscalar(data):
            assert dtype is not None, 'dtype should be given when casting python scalar to tensor'
            dtype = convert_dtype(dtype) if isinstance(
                dtype, core.VarDesc.VarType) else dtype
            data = np.array([data]).astype(dtype)

W
Wu Yi 已提交
423 424 425 426 427 428
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


429
class FetchHandler(object):
D
Dong Daxiang 已提交
430 431 432
    def __init__(self, var_dict=None, period_secs=60):
        assert var_dict != None
        self.var_dict = var_dict
433 434
        self.period_secs = period_secs

D
Dong Daxiang 已提交
435 436 437 438 439
    def handler(self, res_dict):
        for key in res_dict:
            if type(res_dict[key]) is np.ndarray:
                sys.stdout.write("{}[0]: {} ".format(key, res_dict[key][0]))
        sys.stdout.write("\n")
440 441 442 443

    @staticmethod
    def help():
        print("""
D
Dong Daxiang 已提交
444 445 446 447 448 449 450 451
class FetchHandlerExample(FetchHandler):
    def handler(self, res_dict):
        print(res_dict["auc"])
        print("auc: {}, {}".format(res_dict["auc"], time.ctime()))

auc = Variable()
var_dict = {"auc": auc}
handler = FetchHandlerExample(var_dict=var_dict)
452 453 454
""")


Y
Yu Yang 已提交
455
class Executor(object):
456
    """
457
    An Executor in Python, supports single/multiple-GPU running,
458
    and single/multiple-CPU running.
C
chengduo 已提交
459 460

    Args:
461 462 463 464 465
        place(fluid.CPUPlace()|fluid.CUDAPlace(n)|None): This parameter represents
            which device the executor runs on. When this parameter is None, PaddlePaddle
            will set the default device according to its installation version. If Paddle
            is CPU version, the default device would be set to `CPUPlace()` . If Paddle is
            GPU version, the default device would be set to `CUDAPlace(0)` . Default is None.
C
chengduo 已提交
466 467 468

    Returns:
        Executor
S
Fix doc  
sneaxiy 已提交
469

470
    Examples:
S
Fix doc  
sneaxiy 已提交
471 472
        .. code-block:: python

473 474 475 476 477
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

478 479 480 481 482 483 484
          # Set place explicitly.
          # use_cuda = True
          # place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          # exe = fluid.Executor(place)

          # If you don't set place, PaddlePaddle sets the default device.
          exe = fluid.Executor()
485 486 487 488

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
C
chengduo 已提交
489
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
507 508 509 510 511
          # NOTE: If you use CPU to run the program or Paddle is
          # CPU version, you need to specify the CPU_NUM, otherwise,
          # fluid will use all the number of the logic core as
          # the CPU_NUM, in that case, the batch size of the input
          # should be greater than CPU_NUM, if not, the process will be
512
          # failed by an exception.
513 514 515 516 517 518

          # Set place explicitly.
          # if not use_cuda:
          #     os.environ['CPU_NUM'] = str(2)

          # If you don't set place and PaddlePaddle is CPU version
519
          os.environ['CPU_NUM'] = str(2)
520 521 522 523 524 525 526

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
527 528
    """

529 530 531 532 533 534 535 536
    def __init__(self, place=None):
        if place is None:
            if core.is_compiled_with_cuda():
                self.place = core.CUDAPlace(0)
            else:
                self.place = core.CPUPlace()
        else:
            self.place = place
Q
qiaolongfei 已提交
537
        self.program_caches = dict()
538
        self.ctx_caches = dict()
539 540
        self.scope_caches = dict()
        self.var_caches = dict()
541
        self.pruned_program_caches = dict()
542 543 544
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
545
        self._closed = False
546
        self.pruned_program_scope_caches = dict()
D
dzhwinter 已提交
547

548 549 550
    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

551 552 553
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
554 555 556 557 558 559
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

560 561 562 563 564 565 566 567 568 569 570 571
    def _get_pruned_program_cache(self, program_cache_key):
        return self.pruned_program_caches.get(program_cache_key, None)

    def _add_pruned_program_cache(self, program_cache_key, program):
        self.pruned_program_caches[program_cache_key] = program

    def _get_pruned_program_scope_cache(self, program_cache_key):
        return self.pruned_program_scope_caches.get(program_cache_key, None)

    def _add_pruned_program_scope_cache(self, program_cache_key, program):
        self.pruned_program_scope_caches[program_cache_key] = program

572 573 574
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

575 576 577
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

Q
Qiao Longfei 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
603 604 605 606 607 608 609 610 611 612 613
                if global_block.has_var(name):
                    out = global_block.var(name)
                    global_block._prepend_op(
                        type='feed',
                        inputs={'X': [feed_var]},
                        outputs={'Out': [out]},
                        attrs={'col': i})
                else:
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % name)
Q
Qiao Longfei 已提交
614 615 616
        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
617 618 619
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
620 621 622 623 624 625 626 627 628 629
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
H
Huihuang Zheng 已提交
630 631
        global_block = program.global_block()
        for op in global_block.ops:
Q
Qiao Longfei 已提交
632 633 634
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
H
Huihuang Zheng 已提交
635
                var = global_block.var(feed_target_name)
636 637
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = _as_lodtensor(cur_feed, self.place, var.dtype)
H
Huihuang Zheng 已提交
638
                check_feed_shape_type(var, cur_feed)
Q
Qiao Longfei 已提交
639 640 641 642 643 644 645 646
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
647
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
648 649 650
        ]
        return outs

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    def _split_optimize_ops_in_fetch_list(self, fetch_list):
        """
        Split optimize_ops from fetch_list, which provided to specify program prunning.
        Args:
            fetch_list(list): The original fetch_list.
            Possible types of fetch_list are:
                fetch_list = ['loss']
                fetch_list = [[sgd, sgd], 'loss']
                fetch_list = [([sgd, sgd], [(param, grad)]), 'loss']

        Returns:
            optimize_ops(list): The optimize operators splited from fetch_list.
            fetch_list(list):  The updated fetch_list which does not contain optimize operators.  
        """
        _optimize_ops = []
        _fetch_list = []

        def _get_targets(_optimize_ops, _fetch_list, item):
            if isinstance(item, Operator):
                if item._is_optimize_op():
                    _optimize_ops.append(item)
                else:
                    raise TypeError(
                        "The operator in fetch_list is not an optimize_op")
            elif isinstance(item, Variable) or isinstance(
                    item, str) or isinstance(item, six.string_types):
                _fetch_list.append(item)
            else:
                raise TypeError(
                    "The item in fetch_list should be str, variable or optimize_op, but recieved %s.",
                    type(item))

        for item in fetch_list:
            # NOTE(zhiqiu): to support (optimizer_ops, param_and_grads) and optimizer_ops in fetch_list
            # we should handle tuple and list in fetch_list.
            # TODO(zhiqiu): find a better way to handle that.
            if isinstance(item, list):
                for i in item:
                    _get_targets(_optimize_ops, _fetch_list, i)
            elif isinstance(item, tuple):
                for i in item[0]:
                    _get_targets(_optimize_ops, _fetch_list, i)
            else:
                _get_targets(_optimize_ops, _fetch_list, item)

        return _fetch_list, _optimize_ops

    def _prune_program(self,
                       program,
                       feed=None,
                       fetch_list=None,
                       optimize_ops=None):
        """
        Prune operators and variables which are not needed to generate
        :code:`fetch_list` and optimize operators. 
        Prune operators and variables which are needed 
        to generate variables to be feeded.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the origin program
            feed(list|dict): feed dict or list.
            fetch_list(list|Variable): A list of variables need to be fetched
            optimize_ops(list[Operator]): A list of optimizer operators

        Returns:
            Program:  A new, pruned program.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                origin_program = program._program
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph, which can't be pruned yet."
                )
                return
        else:
            origin_program = program

        feed_names = []
        if isinstance(feed, dict):
            feed_names = list(feed.keys())
        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                feed_names += list(each.keys())

        # if optimize_ops is [], all optimize ops in the program is used.
        if not optimize_ops:
            for block in origin_program.blocks:
                for op in block.ops:
                    if op._is_optimize_op():
                        optimize_ops.append(op)

        targets = fetch_list + optimize_ops
        pruned_program = origin_program._prune_with_input(feed_names, targets)

        if compiled:
            # for compiled program, update the underlying program, re-generate graph,
            # and reset the flag so it can be compiled again.
            program._program = pruned_program
            program._graph = core.Graph(pruned_program.desc)
            program._compiled = False
        else:
            program = pruned_program

        return program

    def _update_feed(self, program, feed):
        """
        Update the feed dict, remove the feed item which is pruned in program.  

        Notes: This is a very low level API. Users should not use this API
        directly. 

        Args:
            program(Program): the pruned program.
            feed(list|dict): feed dict or list.

        Returns:
            feed:(list|dict)  updated feed.
        """
        compiled = isinstance(program, compiler.CompiledProgram)
        if compiled:
            if program._program:
                global_block = program._program.global_block()
            else:
                warnings.warn(
                    "The program holds no _program, maybe it is constructed by graph."
                )
        else:
            global_block = program.global_block()

        if isinstance(feed, dict):
            for feed_name in list(feed.keys()):
                if not global_block.has_var(feed_name):
                    feed.pop(feed_name)
                    warnings.warn(
                        "The variable %s is not found in program. It is not declared or is pruned."
                        % feed_name)

        elif isinstance(feed, list) or isinstance(feed, tuple):
            for i, each in enumerate(feed):
                for feed_name in list(each.keys()):
                    if not global_block.has_var(feed_name):
                        each.pop(feed_name)
                        warnings.warn(
                            "The variable %s is not found in program. It is not declared or is pruned."
                            % feed_name)
        return feed

S
Fix doc  
sneaxiy 已提交
804 805 806 807 808 809
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
810 811
    def close(self):
        """
C
chengduo 已提交
812 813 814
        Close the executor. This interface is used for distributed training (PServers mode).
        This executor can not be used after calling the interface, because
        this interface releases resources associated with the current Trainer.
Y
Yancey1989 已提交
815

C
chengduo 已提交
816 817
        Returns:
            None
818 819 820 821 822 823 824 825 826 827

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
828
        """
829 830
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
831
            self._closed = True
Y
Yancey1989 已提交
832

X
fix  
Xin Pan 已提交
833
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
Z
Zhen Wang 已提交
834
                      return_numpy, return_merged):
835
        exe = program._executor
H
Huihuang Zheng 已提交
836 837 838 839 840
        # TODO(zhenghuihuang): quantization uses Graph in CompiledProgram
        # instead of program. We will add support for checking Vars in Graph
        need_check_feed = program._program is not None
        if need_check_feed:
            global_block = program._program.global_block()
841 842 843 844
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
845
                var = global_block.var(feed_name) if need_check_feed else None
846
                if not isinstance(feed_tensor, core.LoDTensor):
847
                    # always set to CPU place, since the tensor need to be split
848
                    # it is fast in CPU
849 850 851
                    feed_tensor = _as_lodtensor(feed[feed_name],
                                                core.CPUPlace(), var.dtype
                                                if var else None)
H
Huihuang Zheng 已提交
852
                if need_check_feed:
853
                    check_feed_shape_type(var, feed_tensor, exe.device_count())
854 855
                feed_tensor_dict[feed_name] = feed_tensor

856
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
857 858 859 860 861 862 863 864 865
        elif isinstance(feed, list) or isinstance(feed, tuple):
            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
866 867
                    var = global_block.var(
                        feed_name) if need_check_feed else None
868
                    if not isinstance(tensor, core.LoDTensor):
869 870 871
                        tensor = _as_lodtensor(each[feed_name],
                                               program._places[i], var.dtype
                                               if var else None)
H
Huihuang Zheng 已提交
872 873
                    if need_check_feed:
                        check_feed_shape_type(var, tensor)
874 875
                    res_dict[feed_name] = tensor
                res.append(res_dict)
876
            exe.feed_tensors_into_local_scopes(res)
877

X
polish  
Xin Pan 已提交
878
        fetch_var_names = list(map(_to_name_str, fetch_list))
Z
Zhen Wang 已提交
879
        tensors = exe.run(fetch_var_names, return_merged)._move_to_list()
880
        return as_numpy(tensors) if return_numpy else tensors
881

Y
Yu Yang 已提交
882
    def run(self,
Y
Yu Yang 已提交
883
            program=None,
884 885
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
886
            feed_var_name='feed',
Y
Yu Yang 已提交
887
            fetch_var_name='fetch',
D
dzhwinter 已提交
888
            scope=None,
889
            return_numpy=True,
Z
Zhen Wang 已提交
890
            use_program_cache=False,
891 892
            return_merged=True,
            use_prune=False):
893
        """
C
chengduo 已提交
894 895 896 897 898
        Run the specified :code:`Program` or :code:`CompiledProgram`. It should be noted that the executor
        will execute all the operators in :code:`Program` or :code:`CompiledProgram` without pruning some
        operators of the :code:`Program` or :code:`CompiledProgram` according to fetch_list. And you could
        specify the scope to store the :code:`Variables` during the executor running if the scope
        is not set, the executor will use the global scope, i.e. :code:`fluid.global_scope()`.
899

C
chengduo 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        Args:
            program(Program|CompiledProgram): This parameter represents the :code:`Program` or
                :code:`CompiledProgram` to be executed. If this parameter is not provided, that
                parameter is None, the program will be set to :code:`fluid.default_main_program()`.
                The default is None.
            feed(list|dict): This parameter represents the input variables of the model.
                If it is single card training, the feed is dict type, and if it is multi-card
                training, the parameter feed can be dict or list type variable. If the
                parameter type is dict, the data in the feed will be split and sent to
                multiple devices (CPU/GPU), that is to say, the input data will be evenly
                sent to different devices, so you should make sure the number of samples of
                the current mini-batch must be greater than the number of places;
                if the parameter type is list, those data are copied directly to each device,
                so the length of this list should be equal to the number of places.
                The default is None.
            fetch_list(list): This parameter represents the variables that need to be returned
916
                after the model runs. The default is None. 
C
chengduo 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930
            feed_var_name(str): This parameter represents the name of the input variable of
                the feed operator. The default is "feed".
            fetch_var_name(str): This parameter represents the name of the output variable of
                the fetch operator. The default is "fetch".
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is :code:`fluid.global_scope()`
            return_numpy(bool): This parameter indicates whether convert the fetched variables
                (the variable specified in the fetch list) to numpy.ndarray. if it is False,
                the type of the return value is a list of :code:`LoDTensor`. The default is True.
            use_program_cache(bool): This parameter indicates whether the input :code:`Program` is cached.
                If the parameter is True, the model may run faster in the following cases:
                the input program is :code:`fluid.Program`, and the parameters(program, feed variable name
                and fetch_list variable) of this interface remains unchanged during running.
                The default is False.
Z
Zhen Wang 已提交
931 932 933 934 935 936 937 938 939 940 941
            return_merged(bool): This parameter indicates whether fetched variables (the variables
                specified in the fetch list) should be merged according to the execution device dimension.
                If :code:`return_merged` is False, the type of the return value is a two-dimensional list
                of :code:`Tensor` ( :code:`return_numpy` is False) or a two-dimensional list of
                :code:`numpy.ndarray` ( :code:`return_numpy` is True). If :code:`return_merged` is True,
                the type of the return value is an one-dimensional list of :code:`Tensor` ( :code:`return_numpy`
                is False) or an one-dimensional list of :code:`numpy.ndarray` ( :code:`return_numpy` is True).
                Please see Examples 2 for more details. If the lengths of fetched results are variant, please
                set :code:`return_merged` as False, which denotes that the fetched results will not be merged.
                The default is True, but it is just for the compatibility, and may use False as default value
                in the future version.
942 943 944 945 946 947 948
            use_prune(bool): This parameter indicates whether the input :code:`Program` will be pruned. 
                If the parameter is True, the program will be pruned accroding to the given feed and fetch_list,
                which means the operators and variables in program that generate :code:`feed` and are not 
                needed to generate :code:`fetch_list` will be pruned. The default is False, which means the 
                program will not pruned and all the operators and variables will be executed during running.
                Note that if the tuple returned from :code:`Optimizer.minimize()` is passed to :code:`fetch_list`, 
                :code:`use_prune` will be overrided to True, and the program will be pruned.
C
chengduo 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
                
        Returns:

            List: The fetched result list.

        NOTES:
            1. If it is multi-card running and the feed parameter is dict type, the input data
               will be evenly sent to different cards. For example, using two GPUs to run the model,
               the input sample number is 3, that is, [0, 1, 2], the sample number on GPU0 is 1,
               that is, [0], and the sample number on GPU1 is 2, that is, [1, 2].
               If the number of samples is less than the number of devices, the program will
               throw an exception, so when running the model, you should make sure that the
               number of samples of the last batch of the data set should be greater than the
               number of CPU cores or GPU cards, if it is less than, it is recommended that
               the batch be discarded.
            2. If the number of CPU cores or GPU cards available is greater than 1, the fetch
               results are spliced together in dimension 0 for the same variable values
               (variables in fetch_list) on different devices.
967

Z
Zhen Wang 已提交
968
        Examples 1:
969 970 971 972 973 974 975 976 977
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

C
chengduo 已提交
978
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
979 980 981 982 983 984 985 986 987 988 989
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Z
Zhen Wang 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

        Examples 2:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # First create the Executor.
                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)

                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                class_dim = 2
                prediction = fluid.layers.fc(input=data, size=class_dim)
                loss = fluid.layers.mean(prediction)
                adam = fluid.optimizer.Adam()
                adam.minimize(loss)

                # Run the startup program once and only once.
                exe.run(fluid.default_startup_program())
                build_strategy = fluid.BuildStrategy()
                binary = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
                    loss_name=loss.name, build_strategy=build_strategy)
                batch_size = 6
                x = np.random.random(size=(batch_size, 1)).astype('float32')

                # Set return_merged as False to fetch unmerged results:
                unmerged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=False)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (2, 3, class_dim). The first dimension value of the printed result is the number of used
                # GPU cards, and the second dimension value is the quotient of batch_size and the
                # number of used GPU cards.
                print("The unmerged prediction shape: {}".format(np.array(unmerged_prediction).shape))
                print(unmerged_prediction)

                # Set return_merged as True to fetch merged results:
                merged_prediction, = exe.run(binary, feed={'X': x},
                    fetch_list=[prediction.name],
                    return_merged=True)
                # If the user uses two GPU cards to run this python code, the printed result will be
                # (6, class_dim). The first dimension value of the printed result is the batch_size.
                print("The merged prediction shape: {}".format(np.array(merged_prediction).shape))
                print(merged_prediction)

                # Out:
                # The unmerged prediction shape: (2, 3, 2)
                # [array([[-0.37620035, -0.19752218],
                #        [-0.3561043 , -0.18697084],
                #        [-0.24129935, -0.12669306]], dtype=float32), array([[-0.24489994, -0.12858354],
                #        [-0.49041364, -0.25748932],
                #        [-0.44331917, -0.23276259]], dtype=float32)]
                # The merged prediction shape: (6, 2)
                # [[-0.37789783 -0.19921964]
                #  [-0.3577645  -0.18863106]
                #  [-0.24274671 -0.12814042]
                #  [-0.24635398 -0.13003758]
                #  [-0.49232286 -0.25939852]
                #  [-0.44514108 -0.2345845 ]]
1050
        """
C
chengduo 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059
        try:
            return self._run_impl(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
Z
Zhen Wang 已提交
1060
                use_program_cache=use_program_cache,
1061
                use_prune=use_prune,
Z
Zhen Wang 已提交
1062
                return_merged=return_merged)
C
chengduo 已提交
1063 1064
        except Exception as e:
            if not isinstance(e, core.EOFException):
1065 1066
                warnings.warn(
                    "The following exception is not an EOF exception.")
1067
            six.reraise(*sys.exc_info())
C
chengduo 已提交
1068 1069

    def _run_impl(self, program, feed, fetch_list, feed_var_name,
Z
Zhen Wang 已提交
1070
                  fetch_var_name, scope, return_numpy, use_program_cache,
1071
                  return_merged, use_prune):
Y
Yancey1989 已提交
1072 1073 1074
        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

C
chengduo 已提交
1075
        use_default_main_program = program is None
1076 1077
        if program is None:
            program = default_main_program()
C
chengduo 已提交
1078
        if isinstance(program, Program) and \
1079
                        len(program.global_block().ops) == 0:
C
chengduo 已提交
1080
            if use_default_main_program:
1081 1082 1083 1084 1085 1086 1087 1088
                error_info = "Now you are using default_main_program, "\
                    "but there are no operators in the program to be executed. "\
                    "Please ensure you create model correctly or you can pass "\
                    "the Program or the CompiledProgram manually."
            else:
                error_info = "There are no operators in the program to be executed. "\
                    "If you pass Program manually, please use fluid.program_guard "\
                    "to ensure the current Program is being used."
C
chengduo 已提交
1089
            warnings.warn(error_info)
1090

1091 1092
        if scope is None:
            scope = global_scope()
1093 1094

        if fetch_list is not None:
1095 1096 1097
            if isinstance(fetch_list, Variable) or isinstance(
                    fetch_list, str) or isinstance(fetch_list,
                                                   six.string_types):
1098 1099 1100 1101 1102 1103
                fetch_list = [fetch_list]
            assert isinstance(fetch_list, tuple) or isinstance(fetch_list, list), \
                "Currently , The fetch_list type only should be list or tuple, \n"\
                "but the input type is {}. For more information please refer to \n"\
                "the executor.run(...).".format(type(fetch_list))
        else:
X
polish  
Xin Pan 已提交
1104
            fetch_list = []
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        # use_prune can be overrided by putting optimize_ops in fetch_list
        _origin_fetch_list = fetch_list
        _origin_program = program
        fetch_list, optimize_ops = self._split_optimize_ops_in_fetch_list(
            fetch_list)
        if optimize_ops:
            use_prune = True
        if use_prune:
            cache_key = _get_strong_program_cache_key(program, feed,
                                                      _origin_fetch_list)
            cached_pruned_program = self._get_pruned_program_cache(cache_key)
            if cached_pruned_program is None:
                if isinstance(program, compiler.CompiledProgram):
                    program_scope_cache = self._get_pruned_program_scope_cache(
                        str(id(_origin_program)))
                    # copy the original program, so it can be cached.
                    program = copy.copy(program)
                    # share the local scopes for same original CompiledProgram.
                    program._share_vars_from = program_scope_cache
                    if self._get_pruned_program_scope_cache(
                            str(id(_origin_program))) is None:
                        self._add_pruned_program_scope_cache(
                            str(id(_origin_program)), program)
                pruned_program = self._prune_program(program, feed, fetch_list,
                                                     optimize_ops)
                self._add_pruned_program_cache(cache_key, pruned_program)
            else:
                pruned_program = cached_pruned_program

            feed = self._update_feed(pruned_program, feed)
            program = pruned_program

X
polish  
Xin Pan 已提交
1138
        compiled = isinstance(program, compiler.CompiledProgram)
H
Huihuang Zheng 已提交
1139

X
polish  
Xin Pan 已提交
1140
        # For backward compatibility, run directly.
1141
        if not compiled:
C
chengduo 已提交
1142
            return self._run_program(
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
                program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)

        program._compile(scope, self.place)
C
chengduo 已提交
1153 1154 1155
        if program._is_inference:
            return self._run_inference(program._executor, feed)
        else:
1156
            return self._run_parallel(
X
fix  
Xin Pan 已提交
1157
                program,
1158 1159 1160
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
1161
                fetch_var_name=fetch_var_name,
Z
Zhen Wang 已提交
1162 1163
                return_numpy=return_numpy,
                return_merged=return_merged)
1164

C
chengduo 已提交
1165
    def _run_program(self, program, feed, fetch_list, feed_var_name,
C
chengduo 已提交
1166
                     fetch_var_name, scope, return_numpy, use_program_cache):
1167

1168 1169
        if feed is None:
            feed = {}
S
sneaxiy 已提交
1170 1171 1172 1173
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
1174
        if not isinstance(feed, dict):
D
dzhwinter 已提交
1175 1176 1177
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
1178

1179
        assert program is not None, "The program should not be Empty"
Y
Yu Yang 已提交
1180
        if not isinstance(program, Program):
D
dzhwinter 已提交
1181 1182 1183
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
1184

1185
        if use_program_cache:
1186
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
1187
            cached_program = self._get_program_cache(cache_key)
1188
            cached_ctx = self._get_ctx_cache(cache_key)
1189
            cached_scope = self._get_scope_cache(cache_key)
Q
Qiao Longfei 已提交
1190 1191 1192 1193 1194 1195 1196 1197
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
1198
                fetch_list_str = list(map(_to_name_str, fetch_list))
1199
                cached_ctx = self._default_executor.prepare(
1200 1201 1202 1203 1204 1205 1206
                    cached_program.desc, 0, fetch_list_str, False)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
1207 1208
                self._default_executor.create_variables(cached_program.desc,
                                                        cached_scope, 0)
1209
                self._add_ctx_cache(cache_key, cached_ctx)
1210
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
1211
            program = cached_program
1212
            ctx = cached_ctx
1213
            scope = cached_scope
1214
        else:
Q
Qiao Longfei 已提交
1215 1216 1217 1218 1219 1220 1221 1222
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
1223
        if not use_program_cache:
C
chengduo 已提交
1224 1225
            self._default_executor.run(program.desc, scope, 0, True, True,
                                       fetch_var_name)
1226
        else:
1227 1228
            self._default_executor.run_prepared_ctx(ctx, scope, False, False,
                                                    False)
1229 1230
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()
        tensors = arr._move_to_list()
D
dzhwinter 已提交
1231
        if return_numpy:
1232 1233 1234
            return as_numpy(tensors)
        else:
            return tensors
F
flame 已提交
1235

X
Xin Pan 已提交
1236 1237
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
1238

1239 1240
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
H
hutuxian 已提交
1241
            fout.write(str(trainer))
1242
        if program._fleet_opt and "fleet_desc" in program._fleet_opt:
1243 1244 1245
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    def _adjust_pipeline_resource(self, pipeline_opt, dataset, pipeline_num):
        filelist_length = len(dataset.dataset.get_filelist())
        if filelist_length < pipeline_num:
            pipeline_num = filelist_length
            print(
                "Pipeline training: setting the pipeline num to %d is enough because there are only %d files"
                % (filelist_length, filelist_length))
        if filelist_length < pipeline_num * pipeline_opt["concurrency_list"][0]:
            print(
                "Pipeline training: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                % (filelist_length // pipeline_num, filelist_length))
            pipeline_opt["concurrency_list"][
                0] = filelist_length // pipeline_num
        dataset.set_thread(pipeline_opt["concurrency_list"][0] * pipeline_num)
        return pipeline_num

1262 1263 1264 1265 1266 1267 1268 1269 1270
    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
1271 1272 1273 1274
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
1275 1276 1277
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
1278 1279
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
H
hutuxian 已提交
1280 1281 1282 1283 1284 1285
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
1286
                trainer._set_thread_barrier(program._is_distributed)
1287
            trainer._set_program(program)
1288
        else:
H
hutuxian 已提交
1289 1290 1291 1292 1293 1294
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
1295
            trainer._set_program(program.program)
H
hutuxian 已提交
1296

1297
        if thread <= 0:
D
dongdaxiang 已提交
1298 1299
            if dataset.thread_num <= 0:
                raise RuntimeError(
1300 1301
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
1302
            else:
1303
                trainer._set_thread(dataset.thread_num)
1304
        else:
1305
            trainer._set_thread(thread)
H
hutuxian 已提交
1306

1307 1308
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
1309
        return scope, trainer
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    def _run_from_dataset(self,
                          program=None,
                          dataset=None,
                          scope=None,
                          thread=0,
                          is_infer=False,
                          debug=False,
                          fetch_list=None,
                          fetch_info=None,
                          print_period=100,
                          fetch_handler=None):
        if dataset is None:
            raise RuntimeError("dataset is need and should be initialized")

H
hutuxian 已提交
1325 1326 1327
        if program._pipeline_opt is not None and program._pipeline_opt[
                "sync_steps"] != -1:
            # hack for paddlebox: sync_steps(-1) denotes paddlebox
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
            thread = self._adjust_pipeline_resource(program._pipeline_opt,
                                                    dataset, thread)

        dataset._prepare_to_run()

        scope, trainer = self._prepare_trainer(
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
1338 1339 1340 1341
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
1342 1343 1344 1345 1346

        trainer._set_infer(is_infer)
        trainer._gen_trainer_desc()

        self._dump_debug_info(program=program, trainer=trainer)
T
tangwei12 已提交
1347
        dataset._dynamic_adjust_before_train(trainer.proto_desc.thread_num)
1348 1349 1350 1351

        trainer_instance = self._default_executor.init_for_dataset(
            program.desc, trainer._desc(), scope, dataset.dataset)

T
tangwei12 已提交
1352 1353 1354 1355 1356 1357
        if fetch_handler is not None:
            scope0 = trainer_instance.get_worker_scope(0)
            fetch_monitor = FetchHandlerMonitor(scope0, fetch_handler)
            fetch_monitor.start()
            self._default_executor.run_from_dataset(trainer_instance)
            fetch_monitor.stop()
D
Dong Daxiang 已提交
1358
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1359 1360 1361
        else:

            self._default_executor.run_from_dataset(trainer_instance)
D
Dong Daxiang 已提交
1362
            self._default_executor.release_trainer(trainer_instance)
T
tangwei12 已提交
1363 1364

        dataset._dynamic_adjust_after_train()
1365
        dataset._finish_to_run()
T
tangwei12 已提交
1366

1367 1368
        return None

1369 1370 1371 1372 1373
    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
1374 1375 1376
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1377 1378
                           print_period=100,
                           fetch_handler=None):
1379
        """
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        Infer from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, infer_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current infer task.

        The document of infer_from_dataset is almost the same as train_from_dataset,
        except that in distributed training, push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-threadvery easily.
1391

1392 1393
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1394
                if not provided, then default_main_program (not compiled) will be used.
1395
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1396 1397
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed. default is None
1398
            scope(Scope): the scope used to run this program, you can switch it to different scope
1399 1400 1401
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1402
            debug(bool): whether a user wants to run infer_from_dataset, default is False
1403 1404
            fetch_list(Variable List): fetch variable list, each variable will be printed during
                training, default is None
1405 1406
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
1407
            fetch_handler(FetchHandler): a user define class for fetch output.
1408

1409 1410 1411 1412
        Returns:
            None

        Examples:
1413 1414

            .. code-block:: python
1415

1416
                import paddle.fluid as fluid
1417 1418

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1419
                exe = fluid.Executor(place)
1420 1421
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1422 1423
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
1424 1425
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1426 1427 1428 1429
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
1430

1431
        """
1432 1433 1434
        return self._run_from_dataset(program, dataset, scope, thread, True,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)
1435 1436 1437 1438 1439 1440 1441 1442 1443

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
1444 1445
                           print_period=100,
                           fetch_handler=None):
1446 1447 1448 1449 1450 1451 1452 1453
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
1454

1455 1456 1457 1458
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
1459
                if not provided, then default_main_program (not compiled) will be used.
1460
            dataset(paddle.fluid.Dataset): dataset created outside this function,
1461 1462
                a user should provide a well-defined dataset before calling this function.
                Please check the document of Dataset if needed.
1463
            scope(Scope): the scope used to run this program, you can switch it to different scope
1464 1465 1466
                for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. Default is 0, which
                means using thread num of dataset
1467
            debug(bool): whether a user wants to run train_from_dataset 
1468 1469 1470 1471 1472
            fetch_list(Variable List): fetch variable list, each variable will be printed
                during training
            fetch_info(String List): print information for each variable, its length should be equal
                to fetch_list
            print_period(int): the number of mini-batches for each print, default is 100
1473
            fetch_handler(FetchHandler): a user define class for fetch output.
1474 1475 1476

        Returns:
            None
1477
        
1478
        Examples:
1479
        
1480 1481 1482
            .. code-block:: python

              import paddle.fluid as fluid
1483 1484

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
1485
              exe = fluid.Executor(place)
1486 1487
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
1488 1489
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
1490 1491
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
1492 1493 1494 1495
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
1496 1497

        """
1498 1499 1500
        return self._run_from_dataset(program, dataset, scope, thread, False,
                                      debug, fetch_list, fetch_info,
                                      print_period, fetch_handler)