op_function_generator.cc 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18 19 20 21 22 23 24 25 26
#include <fstream>
#include <iostream>
#include <string>

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"

L
Leo Chen 已提交
27 28 29 30 31 32 33 34
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
35 36 37 38 39
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
L
Leo Chen 已提交
40 41
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
42
};
L
Leo Chen 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
69 70 71 72 73 74
    {"sgd", {"ParamOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
    {"momentum", {"ParamOut", "VelocityOut"}},
    {"batch_norm", {"MeanOut", "VarianceOut"}},
    {"accuracy", {"Correct", "Total"}},
75
    {"fill_constant", {"Out"}},
L
Leo Chen 已提交
76 77
    {"matmul", {"Out"}},
    {"fake_quantize_dequantize_moving_average_abs_max",
78
     {"Out", "OutScale", "OutAccum", "OutState"}},
L
Leo Chen 已提交
79
};
80

81
// clang-format off
82 83
const char* OUT_INITIALIZER_TEMPLATE =
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase(tracer->GenerateUniqueName()))}})";
84 85 86 87
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
88 89 90 91 92

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(	
    if (%s != nullptr) {	
      ins["%s"] = {%s};	
    }	
93
)";
L
Leo Chen 已提交
94 95 96 97 98 99 100

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(	
    if (%s.size() != 0) {
      ins["%s"] = %s;	
    }	
)";

101 102
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
103 104
)";

105 106
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
107
)";
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

const char* VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TYPE = R"(%s)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
124 125

const char* OP_FUNCTION_TEMPLATE =
126
R"(
127
%s %s(%s)
128
{
129 130 131 132 133 134 135 136 137 138 139
  framework::AttributeMap attrs;
  ConstructAttrMapFromPyArgs(&attrs, args);
  {
    py::gil_scoped_release release;
    auto tracer = imperative::GetCurrentTracer();
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
    tracer->TraceOp("%s", ins, outs, attrs);
    return %s; 
  }   
140
})";
141

142
const char* PYBIND_ITEM_TEMPLATE = R"(  %s.def("%s", &%s);)";
143

144
// clang-format on
L
Leo Chen 已提交
145 146
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
147 148 149
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
150 151 152 153 154 155 156 157
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
158
}
159 160 161

static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions(const std::string& module_name) {
162 163
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

164
  std::vector<std::string> op_function_list, bind_function_list;
165 166
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

167 168 169 170 171 172 173
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
174 175 176 177 178 179 180 181 182 183 184 185
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
    std::string input_args = "";
    std::string ins_initializer = "{";
    std::string ins_initializer_with_null = "";
    std::string py_arg = "";
    for (auto& input : op_proto->inputs()) {
      auto& in_name = input.name();
      // skip those dispensable inputs, like ResidualData in conv2d
L
Leo Chen 已提交
186
      if (input.dispensable() && !FindInsMap(op_type, in_name)) {
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        continue;
      }
      const auto in_type = input.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      auto input_arg = paddle::string::Sprintf(ARG_TEMPLATE, in_type, in_name);
      input_args += input_arg;
      input_args += ",";

      if (input.dispensable()) {
        const auto in_template = input.duplicable()
                                     ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                     : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        ins_initializer_with_null +=
            paddle::string::Sprintf(in_template, in_name, in_name, in_name);
      } else {
        const auto in_template = input.duplicable()
                                     ? INPUT_LIST_INITIALIZER_TEMPLATE
                                     : INPUT_INITIALIZER_TEMPLATE;
        ins_initializer +=
            paddle::string::Sprintf(in_template, in_name, in_name);
        ins_initializer += ",";
      }
    }
    if (ins_initializer.back() == ',') {
      ins_initializer.pop_back();
    }
    ins_initializer += "}";

    if (input_args.back() == ',') {
      input_args.pop_back();
    }
217 218 219

    // Generate outs initializer
    std::string outs_initializer = "{";
L
Leo Chen 已提交
220
    std::string outs_initializer_with_null = "";
221 222
    std::string return_type = "";
    std::string return_str = "";
223

224
    int outs_num = 0;
225
    for (auto& output : op_proto->outputs()) {
L
Leo Chen 已提交
226 227 228
      auto& out_name = output.name();
      // skip those dispensable oututs
      if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
229 230 231 232 233
        continue;
      }
      const auto out_type = output.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      const auto return_template =
          output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;
L
Leo Chen 已提交
234
      if (FindPassingOutsMap(op_type, out_name)) {
235 236 237 238 239
        if (input_args != "") {
          input_args += ",";
        }
        input_args += out_type;
        input_args += out_name;
L
Leo Chen 已提交
240 241 242 243 244

        if (output.dispensable()) {
          const auto out_template =
              output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                  : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
245 246
          outs_initializer_with_null +=
              paddle::string::Sprintf(out_template, out_name, out_name);
L
Leo Chen 已提交
247 248 249 250 251 252 253 254
        } else {
          const auto out_template = output.duplicable()
                                        ? INPUT_LIST_INITIALIZER_TEMPLATE
                                        : INPUT_INITIALIZER_TEMPLATE;
          outs_initializer +=
              paddle::string::Sprintf(out_template, out_name, out_name);
          outs_initializer += ",";
        }
255 256 257 258 259 260 261 262 263 264 265
      } else {
        // There are few Operators that have duplicable output, like `Out` in
        // split op. We need to specify the number of variables for the
        // duplicable output, as the argument OutNum;
        if (output.duplicable()) {
          if (input_args != "") {
            input_args += ",";
          }
          auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
          input_args += ARG_OUT_NUM_TYPE;
          input_args += out_num_str;
L
Leo Chen 已提交
266
          outs_initializer += paddle::string::Sprintf(
267 268
              OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
        } else {
L
Leo Chen 已提交
269
          outs_initializer +=
270 271
              paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
        }
L
Leo Chen 已提交
272
        outs_initializer += ",";
273 274 275 276 277 278 279
      }

      return_type += out_type;
      return_type += ",";
      return_str += paddle::string::Sprintf(return_template, out_name);
      return_str += ",";
      outs_num += 1;
280 281 282
    }
    if (outs_initializer.back() == ',') {
      outs_initializer.pop_back();
283 284
      return_type.pop_back();
      return_str.pop_back();
285 286
    }
    outs_initializer += "}";
287 288 289 290 291 292 293 294 295
    if (outs_num == 0) {
      return_type = "void";
    }
    if (outs_num > 1) {
      return_str = paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str);
      return_type = paddle::string::Sprintf(RETURN_TUPLE_TYPE, return_type);
    }
    std::string function_args = "";
    if (input_args == "") {
296
      function_args = FUNCTION_ARGS_NO_INPUT;
297 298 299
    } else {
      function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
    }
300

301
    std::string func_name = "imperative_" + op_type;
302
    // generate op funtcion body
303
    auto op_function_str = paddle::string::Sprintf(
304
        OP_FUNCTION_TEMPLATE, return_type, func_name, function_args,
L
Leo Chen 已提交
305 306
        outs_initializer, ins_initializer,
        ins_initializer_with_null + outs_initializer_with_null, op_type,
307
        return_str);
308 309

    // generate pybind item
310 311 312 313 314
    auto bind_function_str = paddle::string::Sprintf(
        PYBIND_ITEM_TEMPLATE, module_name, op_type, func_name);

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
315
  }
316
  return std::make_tuple(op_function_list, bind_function_list);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

335 336
  auto op_funcs = GenerateOpFunctions("m");

337 338 339
  out << "namespace py = pybind11;"
      << "\n";
  out << "namespace paddle {\n"
340 341 342
      << "namespace pybind {\n";
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
343

344 345
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n\n";
346

347 348
  out << paddle::string::join_strings(std::get<1>(op_funcs), '\n');
  out << "\n";
349 350 351 352 353 354 355
  out << "}\n\n"
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
  return 0;
}