operator.h 13.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21
#include <string>
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
22
#include "op_info.h"
Y
Yi Wang 已提交
23
#include "paddle/framework/attribute.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/framework.pb.h"
Q
qijun 已提交
25 26 27 28
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
29
#include "paddle/platform/variant.h"
Q
qijun 已提交
30
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34

namespace paddle {
namespace framework {

35
/// If a variable is a empty variable, that name will be used.
36
constexpr char kEmptyVarName[] = "@EMPTY@";
37 38 39

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
40
constexpr char kTempVarName[] = "@TEMP@";
41 42 43 44

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
45
constexpr char kGradVarSuffix[] = "@GRAD";
46 47

/// Variables with this suffix are supposed to be filled up with zeros.
48
constexpr char kZeroVarSuffix[] = "@ZERO";
49 50 51 52 53

inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
54
class OperatorBase;
55 56
class InferShapeContext;
class ExecutionContext;
57

Q
Qiao Longfei 已提交
58 59 60 61 62 63 64 65
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
66 67
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76 77
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

78
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
79 80 81

  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
82
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
83 84

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
85
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
86 87
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
88 89
  virtual bool IsNetOp() const { return false; }

90 91
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
92 93 94
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
95 96
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
Y
Yu Yang 已提交
97
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
98
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
99
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
100
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
101

Y
Yu Yang 已提交
102
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
103
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
104 105
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
106
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
107

Y
Yu Yang 已提交
108
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
109

Q
qiaolongfei 已提交
110
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
111
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
112 113
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
114
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
115 116
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
117

Q
qiaolongfei 已提交
118
 protected:
Q
Qiao Longfei 已提交
119
  std::string type_;
D
dongzhihong 已提交
120
  // NOTE: in case of OpGrad, inputs_ contains:
Y
Yu Yang 已提交
121
  // I (Inputs)opear
D
dongzhihong 已提交
122 123
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
124
  VariableNameMap inputs_;
Y
Yu Yang 已提交
125

D
dongzhihong 已提交
126 127
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
128
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
129
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
130 131
};

Y
Yu Yang 已提交
132 133
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
134
// register it. i.e. `Clone` method is not needed to define by yourself.
Y
Yu Yang 已提交
135
#define DEFINE_OP_CLONE_METHOD(cls)                       \
Y
Yu Yang 已提交
136
  std::unique_ptr<OperatorBase> Clone() const final {     \
Y
Yu Yang 已提交
137
    return std::unique_ptr<OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
138
  }
Y
Yu Yang 已提交
139

Y
Yu Yang 已提交
140 141 142 143
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
144 145
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
146 147 148
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
149
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
150

151 152
class NOP : public OperatorBase {
 public:
153
  using OperatorBase::OperatorBase;
154 155 156
  void InferShape(const Scope& scope) const override {}
  void Run(const Scope& scope,
           const platform::DeviceContext& dev_ctx) const override {}
157 158 159
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
160 161
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate();

 protected:
  struct VariableBuilder {
    OpProto::Var* var_;

    VariableBuilder& AsDuplicable() {
      var_->set_duplicable(true);
      return *this;
    }

    VariableBuilder& AsIntermediate() {
      var_->set_intermediate(true);
      return *this;
    }

188 189
    VariableBuilder& NotInGradient() {
      var_->set_not_in_gradient(true);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
      return *this;
    }
  };

  VariableBuilder AddInput(const std::string& name, const std::string& comment);

  VariableBuilder AddOutput(const std::string& name,
                            const std::string& comment);

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
                               const std::string& comment,
                               bool generated = false) {
    auto* attr = proto_->add_attrs();
    attr->set_name(name);
    attr->set_comment(comment);
    attr->set_generated(generated);
    attr->set_type(AttrTypeID<T>());
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) { proto_->set_comment(comment); }

 private:
  void CheckNoDuplicatedInOutAttrs();

  OpProto* proto_;
  OpAttrChecker* op_checker_;
  bool validated_{false};
};

class NOPMaker : public OpProtoAndCheckerMaker {
 public:
  NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {}
};

227
class InferShapeContext {
Y
Yan Chunwei 已提交
228
 public:
229 230
  InferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}
231

Q
qiaolongfei 已提交
232 233 234 235
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
236 237 238 239 240
  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    return op_.GetAttr<T>(name);
  }

Y
Yu Yang 已提交
241
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
242
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
243 244
  }

Y
Yu Yang 已提交
245
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
246
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
247 248
  }

249
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
250
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
251 252
  }

253
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
254
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
255 256
  }

257 258
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
259 260
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
261
    res.reserve(names.size());
Y
Yan Chunwei 已提交
262
    std::transform(
263
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
264
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
265 266 267
    return res;
  }

268
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
269 270
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
271
    res.reserve(names.size());
Y
Yan Chunwei 已提交
272
    std::transform(
273
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
274
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
275 276 277
    return res;
  }

278 279
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
280
    auto* var = InputVar(name);
Y
Yan Chunwei 已提交
281
    PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
282
    return &var->Get<T>();
283 284 285 286
  }

  template <typename T>
  T* Output(const std::string& name) const {
287
    auto var = OutputVar(name);
Y
Yan Chunwei 已提交
288
    PADDLE_ENFORCE_NOT_NULL(var, "Output(%s) should not be nullptr", name);
289
    return var->GetMutable<T>();
290 291 292 293 294 295 296 297
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
298
                   [&](const std::string& sub_name) {
299
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
300 301 302
                     PADDLE_ENFORCE_NOT_NULL(
                         var, "MultiInput(%s:%s) should not be nullptr", name,
                         sub_name);
303
                     return &var->Get<T>();
304 305 306 307 308 309 310 311 312 313
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
314
                   [&](const std::string& sub_name) {
315
                     auto var = scope_.FindVar(sub_name);
Y
Yan Chunwei 已提交
316
                     PADDLE_ENFORCE_NOT_NULL(
F
fengjiayi 已提交
317
                         var, "MultiOutput(%s:%s) should not be nullptr.", name,
Y
Yan Chunwei 已提交
318
                         sub_name);
319
                     return var->GetMutable<T>();
320 321 322 323
                   });
    return res;
  }

Q
qiaolongfei 已提交
324
 private:
325
  const OperatorBase& op_;
326
  const Scope& scope_;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

344
class ExecutionContext : public InferShapeContext {
345
 public:
346
  ExecutionContext(const OperatorBase& op, const Scope& scope,
D
dongzhihong 已提交
347
                   const platform::DeviceContext* device_context)
348
      : InferShapeContext(op, scope), device_context_(device_context) {}
349

Q
qijun 已提交
350 351 352
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
353
  DeviceType& GetEigenDevice() const;
Q
qijun 已提交
354

D
dongzhihong 已提交
355
  platform::Place GetPlace() const { return device_context_->GetPlace(); }
Q
qijun 已提交
356

Q
qijun 已提交
357
  const platform::DeviceContext* device_context() const {
Q
qijun 已提交
358
    return device_context_;
Q
qijun 已提交
359
  }
Q
qijun 已提交
360

D
dongzhihong 已提交
361
  const platform::DeviceContext* device_context_;
Q
Qiao Longfei 已提交
362 363
};

Q
qijun 已提交
364 365
class OpKernel {
 public:
Q
qijun 已提交
366
  /**
367
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
368 369
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
370
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
371 372
   */

373
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
374 375 376 377

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
378 379
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
380 381
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
382

Y
Yu Yang 已提交
383
    OpKernelKey() = default;
L
liaogang 已提交
384
    explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
Y
Yu Yang 已提交
385 386 387
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
388 389 390
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
402

Y
Yu Yang 已提交
403 404
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
405 406
      : OperatorBase(type, inputs, outputs, attrs) {}

407
  void InferShape(const Scope& scope) const override {
408
    InferShape(InferShapeContext(*this, scope));
409 410
  }

Y
Yu Yang 已提交
411
  void Run(const Scope& scope,
Y
Yu Yang 已提交
412
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
413
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
414
    opKernel->Compute(ExecutionContext(*this, scope, &dev_ctx));
Q
Qiao Longfei 已提交
415 416
  }

Y
Yu Yang 已提交
417 418 419 420
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
421
  }
Y
Yan Chunwei 已提交
422

423 424 425 426 427 428
  bool SupportGPU() const override {
    OperatorWithKernel::OpKernelKey key;
    key.place_ = platform::GPUPlace();
    return OperatorWithKernel::AllOpKernels().at(type_).count(key) != 0;
  }

Y
Yu Yang 已提交
429
 protected:
430
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
431 432 433 434
};

}  // namespace framework
}  // namespace paddle