detection.py 97.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'detection_map',
    'rpn_target_assign',
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
47
    'generate_mask_labels',
48 49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
    'box_clip',
J
jerrywgz 已提交
53
    'multiclass_nms',
54
    'distribute_fpn_proposals',
55
    'box_decoder_and_assign',
C
chengduoZH 已提交
56
]
57 58


59 60
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
61
                      anchor_box,
62
                      anchor_var,
63 64 65
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
66
                      rpn_batch_size_per_im=256,
67 68
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
69
                      rpn_positive_overlap=0.7,
70 71
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
72
    """
H
haowang101779990 已提交
73
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
91
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
92 93 94
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
95 96 97
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
98 99 100 101 102 103
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
104 105
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
106
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
107 108
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
109 110 111
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
112
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
113 114 115
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
116 117 118 119 120 121 122 123 124
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
125
        tuple:
Y
Yuan Gao 已提交
126
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
127 128
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
129 130 131 132 133 134 135
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
136
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
137 138
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
139 140 141 142

    Examples:
        .. code-block:: python

H
haowang101779990 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
            bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
                              append_batch_size=False, dtype='float32')
            cls_logits = layers.data(name='cls_logits', shape=[100, 1],
                              append_batch_size=False, dtype='float32')
            anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                              append_batch_size=False, dtype='float32')
            gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                             append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
                fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                              cls_logits=cls_logits,
                                              anchor_box=anchor_box,
                                              gt_boxes=gt_boxes)

Y
Yuan Gao 已提交
157 158 159
    """

    helper = LayerHelper('rpn_target_assign', **locals())
160
    # Assign target label to anchors
J
jerrywgz 已提交
161 162 163 164 165 166 167
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
168 169
    helper.append_op(
        type="rpn_target_assign",
170 171 172 173 174 175
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
176 177 178
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
179
            'TargetLabel': target_label,
J
jerrywgz 已提交
180
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
181
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
182 183 184
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
185
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
186 187
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
188 189
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
190 191
        })

192 193 194 195
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
196
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
197

198 199 200 201
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
202

J
jerrywgz 已提交
203
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
204 205


Y
Yuan Gao 已提交
206 207
def detection_output(loc,
                     scores,
208 209 210 211 212 213 214 215 216
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
217
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
218

219 220
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
221

222 223 224 225 226 227
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
228 229 230 231 232 233

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
234 235 236 237
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
260 261
        Variable:

262
            The detection outputs is a LoDTensor with shape [No, 6].
263 264 265 266 267 268
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
269
            LoD will be set to {1}, and output tensor only contains one
270
            value, which is -1.
J
jerrywgz 已提交
271 272
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
273 274 275 276

    Examples:
        .. code-block:: python

277
            pb = layers.data(name='prior_box', shape=[10, 4],
278
                         append_batch_size=False, dtype='float32')
279
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
280
                          append_batch_size=False, dtype='float32')
281
            loc = layers.data(name='target_box', shape=[2, 21, 4],
282
                          append_batch_size=False, dtype='float32')
283
            scores = layers.data(name='scores', shape=[2, 21, 10],
284
                          append_batch_size=False, dtype='float32')
285
            nmsed_outs = fluid.layers.detection_output(scores=scores,
286 287 288 289 290
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
291 292 293 294 295
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
296
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
297
    scores = nn.transpose(scores, perm=[0, 2, 1])
298
    scores.stop_gradient = True
X
Xin Pan 已提交
299 300
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
301 302 303 304 305 306 307 308 309 310 311 312 313
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
314
    nmsed_outs.stop_gradient = True
315
    return nmsed_outs
C
chengduoZH 已提交
316 317


X
Xin Pan 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
332
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
352 353
              name=None,
              axis=0):
X
Xin Pan 已提交
354
    """
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
393 394

    Args:
395 396 397 398 399 400 401
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
402 403 404 405
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
424 425

    Returns:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
453 454 455 456
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
457 458
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
459 460 461 462
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

463 464 465 466 467 468 469 470 471 472 473 474
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
475 476
    helper.append_op(
        type="box_coder",
477 478
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
496
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
497 498 499 500 501 502 503 504 505 506 507 508
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
509 510 511
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
                gtbox,
D
dengkaipeng 已提交
512
                gtlabel,
D
dengkaipeng 已提交
513
                anchors,
514
                anchor_mask,
D
dengkaipeng 已提交
515 516
                class_num,
                ignore_thresh,
517
                downsample_ratio,
518
                gtscore=None,
D
dengkaipeng 已提交
519 520
                use_label_smooth=True,
                name=None):
D
dengkaipeng 已提交
521 522 523 524 525
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
D
dengkaipeng 已提交
526 527 528 529 530
        gtbox (Variable): groud truth boxes, should be in shape of [N, B, 4],
                          in the third dimenstion, x, y, w, h should be stored 
                          and x, y, w, h should be relative value of input image.
                          N is the batch number and B is the max box number in 
                          an image.
D
dengkaipeng 已提交
531
        gtlabel (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
532
                            of [N, B].
D
dengkaipeng 已提交
533
        anchors (list|tuple): ${anchors_comment}
534
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
535 536
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
537
        downsample_ratio (int): ${downsample_ratio_comment}
538
        name (string): the name of yolov3 loss. Default None.
539
        gtscore (Variable): mixup score of ground truth boxes, shoud be in shape
540
                            of [N, B]. Default None.
541
        use_label_smooth (bool): ${use_label_smooth_comment}
D
dengkaipeng 已提交
542 543

    Returns:
544
        Variable: A 1-D tensor with shape [N], the value of yolov3 loss
D
dengkaipeng 已提交
545 546 547

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
D
dengkaipeng 已提交
548 549
        TypeError: Input gtbox of yolov3_loss must be Variable
        TypeError: Input gtlabel of yolov3_loss must be Variable
D
dengkaipeng 已提交
550
        TypeError: Input gtscore of yolov3_loss must be None or Variable
D
dengkaipeng 已提交
551 552 553
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number
554
        TypeError: Attr use_label_smooth of yolov3_loss must be a bool value
D
dengkaipeng 已提交
555 556

    Examples:
557 558 559
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
560 561
          gtbox = fluid.layers.data(name='gtbox', shape=[6, 4], dtype='float32')
          gtlabel = fluid.layers.data(name='gtlabel', shape=[6], dtype='int32')
D
dengkaipeng 已提交
562
          gtscore = fluid.layers.data(name='gtscore', shape=[6], dtype='float32')
563 564
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
565 566
          loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel,
                                          gtscore=gtscore, anchors=anchors, 
567 568
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
569 570 571 572 573 574 575
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
    if not isinstance(gtbox, Variable):
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
D
dengkaipeng 已提交
576 577
    if not isinstance(gtlabel, Variable):
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
D
dengkaipeng 已提交
578
    if gtsocre is not None and not isinstance(gtscore, Variable):
579
        raise TypeError("Input gtscore of yolov3_loss must be Variable")
D
dengkaipeng 已提交
580 581
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
582 583
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
584 585 586 587 588
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")
589 590 591
    if not isinstance(use_label_smooth, bool):
        raise TypeError(
            "Attr use_label_smooth of yolov3_loss must be a bool value")
D
dengkaipeng 已提交
592 593 594 595 596 597 598

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

599 600 601
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

602 603 604 605 606 607 608 609
    inputs = {
        "X": x,
        "GTBox": gtbox,
        "GTLabel": gtlabel,
    }
    if gtscore:
        inputs["GTScore"] = gtscore

D
dengkaipeng 已提交
610 611
    attrs = {
        "anchors": anchors,
612
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
613 614
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
615
        "downsample_ratio": downsample_ratio,
616
        "use_label_smooth": use_label_smooth,
D
dengkaipeng 已提交
617 618 619 620
    }

    helper.append_op(
        type='yolov3_loss',
621
        inputs=inputs,
622 623 624 625 626
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
627 628 629 630
        attrs=attrs)
    return loss


X
Xin Pan 已提交
631
@templatedoc()
632 633
def detection_map(detect_res,
                  label,
634 635
                  class_num,
                  background_label=0,
636 637
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
638 639 640 641
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
683 684
    helper = LayerHelper("detection_map", **locals())

685
    def __create_var(type):
X
Xin Pan 已提交
686
        return helper.create_variable_for_type_inference(dtype=type)
687 688 689 690 691 692 693 694 695 696 697 698

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

699 700 701 702 703
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
704
            'HasState': has_state,
705 706 707 708 709 710 711 712 713 714 715 716 717
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
718 719
            'ap_type': ap_version,
            'class_num': class_num,
720
        })
721
    return map_out
722 723


724 725 726 727
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
728
    """
Y
yuyang18 已提交
729 730
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
731
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
732 733 734 735 736 737 738 739
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
740 741 742
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
743

Y
yuyang18 已提交
744
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
745 746 747
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
748 749 750
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

751 752 753 754 755
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
756 757 758 759 760 761
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
762
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
763
           'bipartite' or 'per_prediction'. [default 'bipartite'].
764 765
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
766
            on the maximum distance, 0.5 by default.
767
    Returns:
Y
yuyang18 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
791 792
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
793 794 795
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
796 797 798
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
799 800 801 802
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
820

821 822 823 824 825
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
826

827
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
828

829 830 831
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
832

833 834
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
835

836
        Otherwise,
C
chengduoZH 已提交
837

838 839
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
840

841
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
842

843 844
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
845

846
    .. code-block:: text
C
chengduoZH 已提交
847

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
863 864 865 866 867
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
868 869 870 871 872 873 874 875 876 877 878
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
879 880
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
881 882
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
910
             normalize=True,
911 912
             sample_size=None):
    """
Y
yuyang18 已提交
913
    **Multi-box loss layer for object detection algorithm of SSD**
914 915 916 917 918 919 920

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
921
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
922

923
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
924

925
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
926

927
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
928

929
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
930

931
      2.2. Compute confidence loss.
Y
yuyang18 已提交
932

933 934
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
935

936
    4. Assign classification and regression targets
Y
yuyang18 已提交
937

938
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
939

940
      4.2. Assign regression targets.
Y
yuyang18 已提交
941

942
      4.3. Assign classification targets.
Y
yuyang18 已提交
943

944
    5. Compute the overall objective loss.
Y
yuyang18 已提交
945

946
      5.1 Compute confidence loss.
Y
yuyang18 已提交
947

948
      5.1 Compute localization loss.
Y
yuyang18 已提交
949

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
973
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
974
        neg_overlap (float): The negative overlap upper bound for the unmatched
975
            predictions. Use only when mining_type is 'max_negative',
976 977 978 979
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
980
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
981 982
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
983
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
984
            of output locations, True by default.
985 986
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
987 988

    Returns:
Y
yuyang18 已提交
989 990
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
991 992

    Raises:
Y
yuyang18 已提交
993 994
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
1014 1015 1016 1017 1018 1019 1020
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1021
    conf_shape = nn.shape(confidence)
1022 1023

    def __reshape_to_2d(var):
1024
        return nn.flatten(x=var, axis=2)
1025 1026 1027 1028 1029

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1030 1031
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1032 1033 1034

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1035 1036
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1037
    gt_label.stop_gradient = True
1038 1039 1040 1041 1042 1043 1044
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1045
    target_label.stop_gradient = True
1046 1047
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1048
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1049
    actual_shape.stop_gradient = True
1050
    conf_loss = nn.reshape(
1051
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1052
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1053
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1054
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1055 1056
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1071
            'neg_dist_threshold': neg_overlap,
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1097

1098 1099 1100 1101
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1102 1103 1104 1105
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1106 1107 1108 1109 1110 1111 1112 1113
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1114 1115 1116 1117
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1118 1119
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1120
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1121
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1122 1123 1124 1125 1126
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1127
    return loss
C
chengduoZH 已提交
1128 1129


1130 1131 1132 1133
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1134
              aspect_ratios=[1.],
1135 1136 1137 1138 1139
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1140 1141
              name=None,
              min_max_aspect_ratios_order=False):
1142
    """
Q
update  
qiaolongfei 已提交
1143
    **Prior Box Operator**
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1155
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1156 1157
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1158 1159
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1160 1161 1162 1163
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1164
       step(list|turple): Prior boxes step across width and height, If
1165
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1166 1167
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1168 1169
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1170
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1171
            in order of [min, max, aspect_ratios], which is consistent with
1172 1173 1174
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1175 1176

    Returns:
Q
update  
qiaolongfei 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1190 1191 1192 1193


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1194 1195 1196 1197 1198 1199 1200

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1201 1202 1203 1204
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1220 1221 1222 1223 1224 1225 1226 1227
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1228 1229
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1230 1231
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1232 1233
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1234 1235
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1236 1237
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1259
                      flatten_to_2d=False,
R
ruri 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1296 1297
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1298 1299 1300 1301 1302 1303
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1304 1305 1306 1307
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1308 1309

        variances: the expanded variances of PriorBox.
1310 1311 1312 1313
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1314 1315 1316 1317 1318 1319 1320 1321


    Examples:
        .. code-block:: python

            box, var = fluid.layers.density_prior_box(
                input=conv1,
                image=images,
1322 1323 1324 1325 1326
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1357 1358 1359 1360
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1376
def multi_box_head(inputs,
C
chengduoZH 已提交
1377 1378
                   image,
                   base_size,
C
chengduoZH 已提交
1379
                   num_classes,
C
chengduoZH 已提交
1380
                   aspect_ratios,
1381 1382
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1383 1384
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1385 1386 1387 1388
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1389 1390
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1391
                   clip=False,
C
chengduoZH 已提交
1392
                   kernel_size=1,
C
chengduoZH 已提交
1393
                   pad=0,
C
chengduoZH 已提交
1394
                   stride=1,
1395 1396
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1397
    """
C
chengduoZH 已提交
1398 1399
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1400
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1401
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1402 1403

    Args:
1404
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1405
            of all Variables is NCHW.
C
chengduoZH 已提交
1406 1407
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1408 1409
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1432
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1433 1434 1435 1436 1437 1438
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1439
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1440
            in order of [min, max, aspect_ratios], which is consistent with
1441 1442 1443
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1444 1445

    Returns:
Q
update  
qiaolongfei 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1461

C
chengduoZH 已提交
1462 1463 1464

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1465 1466

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1477 1478
    """

C
chengduoZH 已提交
1479
    def _reshape_with_axis_(input, axis=1):
1480
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1481
        return out
1482

1483 1484
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1485

C
chengduoZH 已提交
1486 1487 1488 1489
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1490 1491
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1492

C
chengduoZH 已提交
1493 1494 1495 1496 1497
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1498
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1499 1500 1501
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1502
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1503 1504 1505 1506 1507
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1531 1532
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1533 1534
    box_results = []
    var_results = []
C
chengduoZH 已提交
1535 1536
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1537 1538
        max_size = max_sizes[i]

1539
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1540
            min_size = [min_size]
C
chengduoZH 已提交
1541 1542
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1543 1544 1545 1546

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1547
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1548
                aspect_ratio = [aspect_ratio]
1549
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1550

1551
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1552 1553
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1554 1555 1556 1557 1558

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1559

1560
        # get loc
Y
Yuan Gao 已提交
1561
        num_loc_output = num_boxes * 4
1562
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1563
            input=input,
1564 1565 1566 1567 1568
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1569
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1570
        compile_shape = [
1571
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1572
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1573
        ]
1574 1575 1576
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1577
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1578

1579
        # get conf
C
chengduoZH 已提交
1580
        num_conf_output = num_boxes * num_classes
1581
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1582
            input=input,
1583 1584 1585 1586
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1587
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1588 1589
        new_shape = [0, -1, num_classes]
        compile_shape = [
1590 1591 1592
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1593
        ]
1594 1595 1596 1597
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1598
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1599

C
chengduoZH 已提交
1600 1601 1602
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1603 1604
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1614 1615
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1616

1617 1618
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1619
    return mbox_locs_concat, mbox_confs_concat, box, var
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1640 1641
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1642
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1643
                                        anchors, e.g. [0.5, 1.0, 2.0].
1644
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1645 1646
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1647 1648 1649 1650
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1704 1705
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1706 1707 1708 1709 1710 1711 1712 1713 1714
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1715 1716


W
whs 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1751
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1765 1766
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1767
                             is_crowd,
1768
                             gt_boxes,
1769
                             im_info,
1770 1771 1772 1773 1774 1775
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1776 1777
                             class_nums=None,
                             use_random=True):
1778
    """
1779
    ** Generate Proposal Labels of Faster-RCNN **
B
buxingyuan 已提交
1780
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1781
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1782 1783 1784

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1785
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1786 1787
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1788
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1789
    then we apply random sampling to make sure
B
buxingyuan 已提交
1790
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1810 1811 1812 1813
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1823 1824 1825 1826 1827 1828

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1829
            'IsCrowd': is_crowd,
1830
            'GtBoxes': gt_boxes,
1831
            'ImInfo': im_info
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1847 1848
            'class_nums': class_nums,
            'use_random': use_random
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
          # rois, labels_int32 can be the output of
          # fluid.layers.generate_proposal_labels.
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
              labels_int32=labels_int32,
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
2006 2007
    **Generate proposal Faster-RCNN**

2008 2009 2010 2011
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
2012 2013 2014 2015
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

2016 2017
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
2018 2019 2020 2021 2022 2023
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2024 2025 2026 2027 2028 2029 2030 2031 2032
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2033
            between origin image size and the size of feature map.
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2045
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2046 2047 2048 2049
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
2050 2051 2052
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2053 2054 2055 2056
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2079 2080


J
jerrywgz 已提交
2081
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2082 2083
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2084
    For each input box, The formula is given as follows:
2085 2086 2087
        
    .. code-block:: text

J
jerrywgz 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2099 2100

    Args:
J
jerrywgz 已提交
2101
        input(variable): The input box, the last dimension is 4.
2102 2103 2104 2105
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2106 2107 2108 2109
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2110
        
J
jerrywgz 已提交
2111 2112
    Examples:
        .. code-block:: python
2113
        
J
jerrywgz 已提交
2114 2115 2116 2117
            boxes = fluid.layers.data(
                name='data', shape=[8, 4], dtype='float32', lod_level=1)
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2118
                input=boxes, im_info=im_info, inplace=True)
J
jerrywgz 已提交
2119 2120 2121
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2122
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2123
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2124
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2125

2126 2127
    return output

J
jerrywgz 已提交
2128

J
jerrywgz 已提交
2129 2130 2131 2132 2133
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2134
                   nms_threshold=0.3,
J
jerrywgz 已提交
2135 2136
                   normalized=True,
                   nms_eta=1.,
2137 2138
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2139
    """
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2201 2202 2203 2204
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2205

2206

2207 2208 2209
    Examples:
        .. code-block:: python

2210

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2243 2244

    return output
2245 2246 2247 2248 2249 2250 2251 2252 2253


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2254 2255 2256 2257 2258 2259
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2260
    
J
jerrywgz 已提交
2261
    .. math::
2262

J
jerrywgz 已提交
2263
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2264

J
jerrywgz 已提交
2265 2266 2267
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2268 2269

    Args:
J
jerrywgz 已提交
2270
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2271 2272 2273 2274 2275 2276
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2277 2278
        name(str|None): The name of this operator.        

2279
    Returns:
J
jerrywgz 已提交
2280 2281 2282 2283 2284
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2285 2286 2287 2288 2289 2290 2291

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2292 2293 2294
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
    dtype = helper.input_dtype()
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2318 2319


2320
@templatedoc()
J
jerrywgz 已提交
2321 2322 2323 2324 2325 2326
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2327 2328 2329 2330 2331 2332 2333
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2334
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2335
        name(str|None): The name of this operator
2336
    Returns:
J
jerrywgz 已提交
2337 2338 2339 2340 2341 2342 2343
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2344 2345 2346
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2347 2348 2349 2350 2351 2352 2353 2354
            pb = fluid.layers.data(
                name='prior_box', shape=[20, 4], dtype='float32')
            pbv = fluid.layers.data(
                name='prior_box_var', shape=[1, 4], dtype='float32')
            loc = fluid.layers.data(
                name='target_box', shape=[20, 4*81], dtype='float32')
            scores = fluid.layers.data(
                name='scores', shape=[20, 81], dtype='float32')
J
jerrywgz 已提交
2355
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2356
                pb, pbv, loc, scores, 4.135)
2357 2358 2359 2360

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2361
    decoded_box = helper.create_variable_for_type_inference(
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2376
            "DecodeBox": decoded_box,
2377 2378
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2379
    return decoded_box, output_assign_box