pybind.cc 19.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15
#include "paddle/pybind/protobuf.h"
16
#include "pybind11/iostream.h"
Q
qijun 已提交
17

Q
QI JUN 已提交
18
#include <mutex>  // for call_once
19
#include <unordered_map>
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
D
dzhwinter 已提交
24
#include "paddle/framework/init.h"
Y
Yu Yang 已提交
25
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
26
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
27
#include "paddle/framework/lod_tensor_array.h"
28
#include "paddle/framework/prune.h"
Q
qijun 已提交
29
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
30
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
31
#include "paddle/operators/net_op.h"
Q
qijun 已提交
32
#include "paddle/platform/enforce.h"
Q
qijun 已提交
33
#include "paddle/platform/place.h"
34
#include "paddle/platform/profiler.h"
Q
qiaolongfei 已提交
35
#include "paddle/pybind/const_value.h"
Y
Yu Yang 已提交
36
#include "paddle/pybind/exception.h"
Q
qijun 已提交
37
#include "paddle/pybind/pybind.h"
38
#include "paddle/pybind/tensor_py.h"
39
#include "paddle/string/to_string.h"
40

D
Dong Zhihong 已提交
41 42
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
43
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
44
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
45 46
#endif

Q
Qiao Longfei 已提交
47 48 49
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

50
namespace paddle {
51
namespace pybind {
52 53 54
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
55 56
}

Q
qijun 已提交
57
bool IsCompileGPU() {
58
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
59 60 61 62 63 64
  return false;
#else
  return true;
#endif
}

65 66
PYBIND11_MODULE(core, m) {
  m.doc() = "C++ core of PaddlePaddle";
67

68 69 70 71
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
72 73
  BindException(m);

74 75 76
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
77
      .def("get_dims",
78
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
79
      .def("set_dims",
Q
qijun 已提交
80
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
81
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
82
           })
D
dzhwinter 已提交
83 84 85 86
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
87
      .def("alloc_float",
D
dzhwinter 已提交
88
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
89
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
90
           })
Q
qijun 已提交
91
      .def("alloc_float",
Y
Yu Yang 已提交
92
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
93
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
94 95
           })
      .def("alloc_int",
Y
Yu Yang 已提交
96
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
97
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
98
           })
Q
qijun 已提交
99
      .def("alloc_int",
D
dzhwinter 已提交
100
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
101
             self.mutable_data<int>(place);
Q
qijun 已提交
102
           })
Y
Yu Yang 已提交
103 104
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
105
      .def("set", PyCPUTensorSetFromArray<double>)
106
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
107
      .def("set", PyCPUTensorSetFromArray<bool>)
108
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
109 110
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
111
      .def("set", PyCUDATensorSetFromArray<double>)
112
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
113
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
114
#endif
115
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
116 117 118 119 120
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
121

122
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
123 124
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
125 126 127
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
128
#ifndef PADDLE_WITH_CUDA
129
            new (&instance) LoDTensor(lod);
130
#else
Y
Yu Yang 已提交
131
             LoD new_lod;
132 133
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
134
             new (&instance) LoDTensor(new_lod);
135
#endif
136
          })
Y
Yu Yang 已提交
137
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
138
      .def("set_lod",
139
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
140
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
141
             self.set_lod(lod);
142
#else
Y
Yu Yang 已提交
143
             LoD new_lod;
144 145 146 147
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
148
           })
149
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
150
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
151
        return self.lod();
152 153 154 155 156
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
157
               [](Vector<size_t> item) ->
158 159 160 161 162 163 164 165
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
166 167
      });

Q
qijun 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
181 182 183 184 185 186 187 188 189
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
190 191 192 193 194 195 196 197 198 199 200
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
201

202
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
203 204 205

All parameter, weight, gradient are variables in Paddle.
)DOC")
206
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
207
      .def("set_int",
208 209
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
210 211 212 213 214 215 216
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
217
      .def("get_tensor",
218 219
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
220 221
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
222 223 224
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
225 226 227 228 229
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
230 231 232
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
233 234 235 236 237 238 239
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
240
      .def("get_net",
D
dongzhihong 已提交
241 242
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
243
           },
Y
Yu Yang 已提交
244
           py::return_value_policy::reference);
245

246
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
247
      .def("var",
248
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
249
             return self.Var(name);
Y
Yu Yang 已提交
250
           },
251
           py::return_value_policy::reference)
252
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
253
      .def(py::init<>())
254
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
255
           py::return_value_policy::reference)
Y
Yu Yang 已提交
256
      .def("drop_kids", &Scope::DropKids);
257

Y
Yu Yang 已提交
258 259
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
260 261
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
262 263 264 265 266 267 268 269 270 271
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
272 273
    return ret_values;
  });
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
290
  m.def("prune", [](const ProgramDesc &origin,
291
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
292
    ProgramDesc prog_with_targets(origin);
293
    for (const auto &t : targets) {
294
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
295
    }
296
    proto::ProgramDesc pruned_desc;
297
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
298
    return new ProgramDesc(pruned_desc);
299
  });
Y
Yu Yang 已提交
300
  m.def("inference_optimize", [](ProgramDesc &origin) {
301
    proto::ProgramDesc pruned_desc;
302
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
303
    return new ProgramDesc(pruned_desc);
304
  });
F
fengjiayi 已提交
305 306
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
307 308 309
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
310 311
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
312
  // clang-format off
Y
Yu Yang 已提交
313
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
314 315
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
316
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
317 318 319
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
320
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
321
                      -> paddle::platform::DeviceContext* {
322
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
323
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
324
#else
Q
qijun 已提交
325
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
326
#endif
Q
qijun 已提交
327
                  });
D
Dong Zhihong 已提交
328
// clang-format on
Q
qijun 已提交
329

D
Dong Zhihong 已提交
330 331 332
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
333
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
334
      .def(py::init<int>())
D
dzhwinter 已提交
335
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
336

337 338 339
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
340

Y
Yu Yang 已提交
341 342 343 344 345 346 347
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
348
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
349 350 351
             self = gpu_place;
           });

Y
Yu Yang 已提交
352 353 354
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
355
                    proto::OpDesc desc;
Y
Yu Yang 已提交
356 357 358 359 360
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
361
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
362 363 364 365 366 367
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
368
      .def("run",
369
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
370 371 372
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
373
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
374 375 376 377 378 379 380
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
381 382
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
383
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
384
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
385 386 387 388
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
389

Y
Yu Yang 已提交
390 391 392 393 394 395 396
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
397 398
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
399 400 401 402
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
403

Z
cond op  
zchen0211 已提交
404 405 406 407
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
408
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
409 410 411 412 413
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
414
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
415 416 417 418 419 420 421 422 423 424 425
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
426
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
427
      .def(py::init<const platform::Place &>())
428
      .def("run", &Executor::Run);
F
fengjiayi 已提交
429

430
  m.def("unique_integer", UniqueIntegerGenerator);
D
dzhwinter 已提交
431
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
432
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
433
  m.def("init_devices", &framework::InitDevices);
434

D
dzhwinter 已提交
435 436 437 438 439 440
  m.def("use_cpu", framework::UseCPU);
  m.def("use_mkldnn", framework::UseMKLDNN);
  m.def("use_cuda", framework::UseCUDA);
  m.def("use_cudnn", framework::UseCUDNN);
  m.def("use_all", framework::UseALL);

Q
qijun 已提交
441
  m.def("is_compile_gpu", IsCompileGPU);
442
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
443
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
444

F
fengjiayi 已提交
445 446 447 448
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
449
  BindConstValue(m);
Y
Yu Yang 已提交
450

Y
Yu Yang 已提交
451 452 453 454 455 456 457 458 459
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
477
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
478
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
479
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
480 481 482 483

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
484
#endif
Y
Yu Yang 已提交
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);

  py::add_ostream_redirect(m, "ostream_redirect");
L
Luo Tao 已提交
506
}
507
}  // namespace pybind
508
}  // namespace paddle