data_norm_op.cc 32.1 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/data_norm_op.h"
16

P
phlrain 已提交
17
#include <memory>
H
heqiaozhi 已提交
18
#include <string>
19

H
heqiaozhi 已提交
20
#include "paddle/fluid/framework/data_layout.h"
H
heqiaozhi 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24
#include "paddle/fluid/framework/op_version_registry.h"
H
heqiaozhi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class DataNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
50 51 52 53 54 55 56 57 58
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNorm");
    OP_INOUT_CHECK(ctx->HasInput("BatchSize"), "Input", "BatchSize",
                   "DataNorm");
    OP_INOUT_CHECK(ctx->HasInput("BatchSum"), "Input", "BatchSum", "DataNorm");
    OP_INOUT_CHECK(ctx->HasInput("BatchSquareSum"), "Input", "BatchSquareSum",
                   "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Means"), "Output", "Means", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Scales"), "Output", "Scales", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "DataNorm");
59 60 61 62 63 64 65 66 67 68 69
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("scale_w"), true,
          platform::errors::InvalidArgument(
              "Input(scale_w) of DataNormOp should not be null."));
      PADDLE_ENFORCE_EQ(ctx->HasInput("bias"), true,
                        platform::errors::InvalidArgument(
                            "Input(bias) of DataNormOp should not be null."));
    }
H
heqiaozhi 已提交
70 71 72 73 74

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

75 76 77
    PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5, true,
                      platform::errors::InvalidArgument(
                          "Input X must have 2 to 5 dimensions."));
H
heqiaozhi 已提交
78 79 80 81 82

    const int64_t C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

83 84 85 86 87 88 89 90 91
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSize shouold be 1"));
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSum shouold be 1"));
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSquareSum shouold be 1"));
P
phlrain 已提交
92
    if (ctx->IsRuntime()) {
93 94 95 96 97 98 99 100 101
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0], C,
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSize shouold be C"));
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0], C,
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSum shouold be C"));
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0], C,
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSqureSum shouold be C"));
P
phlrain 已提交
102
    }
H
heqiaozhi 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    if (enable_scale_and_shift) {
      auto scale_dim = ctx->GetInputDim("scale_w");
      auto bias_dim = ctx->GetInputDim("bias");

      PADDLE_ENFORCE_EQ(
          scale_dim.size(), 1UL,
          platform::errors::InvalidArgument("the dimensionof scale"
                                            "must equal to 1. But received: "
                                            "the shape of scale is [%s], "
                                            "the dimensionof scale is [%d]",
                                            scale_dim, scale_dim.size()));
      PADDLE_ENFORCE_EQ(
          bias_dim.size(), 1UL,
          platform::errors::InvalidArgument("the dimension of bias"
                                            "must equal to 1. But received: "
                                            "the shape of bias is [%s],"
                                            "the dimension of bias is [%d]",
                                            bias_dim, bias_dim.size()));

      bool check = true;
124
      if ((!ctx->IsRuntime()) &&
125
          (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        check = false;
      }

      if (check) {
        PADDLE_ENFORCE_EQ(scale_dim[0], C,
                          platform::errors::InvalidArgument(
                              "the shape of scale must equal to [%d]"
                              "But received: the shape of scale is [%d]",
                              C, scale_dim[0]));
        PADDLE_ENFORCE_EQ(bias_dim[0], C,
                          platform::errors::InvalidArgument(
                              "the shape of bias must equal to [%d]"
                              "But received: the shape of bias is [%d]",
                              C, bias_dim[0]));
      }
    }

H
heqiaozhi 已提交
143 144 145 146 147 148 149 150 151
    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("Means", {C});
    ctx->SetOutputDim("Scales", {C});
    ctx->ShareLoD("X", "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
152
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
153 154 155 156 157 158 159
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto dn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      dn_param_type = framework::proto::VarType::FP64;
    }
160 161
    PADDLE_ENFORCE_EQ(dn_param_type,
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSize"),
162 163
                      platform::errors::InvalidArgument(
                          "BatchSize input should be of float type"));
H
heqiaozhi 已提交
164
    PADDLE_ENFORCE_EQ(dn_param_type,
165
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSum"),
166 167
                      platform::errors::InvalidArgument(
                          "BatchSum input should be of float type"));
168 169 170 171 172
    PADDLE_ENFORCE_EQ(
        dn_param_type,
        OperatorWithKernel::IndicateVarDataType(ctx, "BatchSquareSum"),
        platform::errors::InvalidArgument(
            "BatchSquareSum input should be of float type"));
H
heqiaozhi 已提交
173

174 175 176 177 178 179 180 181 182 183 184
    bool enable_scale_and_shift = ctx.Attr<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "scale_w"),
                        platform::errors::InvalidArgument(
                            "scale_w input should be of float type"));
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "bias"),
                        platform::errors::InvalidArgument(
                            "bias input should be of float type"));
    }
H
heqiaozhi 已提交
185 186 187
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
H
heqiaozhi 已提交
188 189
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
190
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
H
heqiaozhi 已提交
191 192 193 194
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
H
heqiaozhi 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class DataNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    // AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-4)
        .AddCustomChecker([](const float &epsilon) {
208 209 210
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' should be between 0.0 and 0.001."));
H
heqiaozhi 已提交
211
        });
212 213 214 215
    AddAttr<int>("slot_dim",
                 "(int, default -1) Dimension of one slot if set, "
                 "when the input is concated by slot-wise embeddings")
        .SetDefault(-1);
H
hutuxian 已提交
216 217 218 219
    AddAttr<float>(
        "summary_decay_rate",
        "(float, default 0.9999999) The decay rate when update the summary")
        .SetDefault(0.9999999);
220 221 222 223 224 225 226 227 228 229 230 231 232
    AddAttr<bool>(
        "enable_scale_and_shift",
        "(bool, default false) Set to true to enable scale and shift such as "
        "batch_norm op")
        .SetDefault(false);
    AddInput("scale_w",
             "scale_w is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddInput("bias",
             "bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
H
heqiaozhi 已提交
233
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
H
hutuxian 已提交
234 235
    AddAttr<bool>("sync_stats", "(bool, default false) only used in multi-GPU")
        .SetDefault(false);
236 237
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
X
XiangGao 已提交
238 239
        .SetDefault(false)
        .AsExtra();
H
heqiaozhi 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    AddInput("X", "The input tensor");
    AddInput("BatchSize",
             "BatchSize is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSum",
             "BatchSum is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSquareSum",
             "The global BatchSquareSum (for training) or "
             "estimated BatchSquareSum (for testing)");
    AddOutput("Y", "result after normalization");
    AddOutput("Means",
              "Mean of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddOutput("Scales",
              "Scales of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddComment(R"DOC(
Data Normalization.

Can be used as a normalizer function for data
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
  }
};

template <typename T>
class DataNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    // const bool is_test = ctx.Attr<bool>("is_test");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
283 284 285
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2,
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
286 287 288 289 290 291 292 293 294
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("Means");
    auto *scales = ctx.Output<Tensor>("Scales");

    // alloc memory
295
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
H
heqiaozhi 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309

    ConstEigenVectorArrayMap<T> b_size_arr(
        ctx.Input<Tensor>("BatchSize")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_sum_arr(
        ctx.Input<Tensor>("BatchSum")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_square_sum_arr(
        ctx.Input<Tensor>("BatchSquareSum")->data<T>(), C);
    EigenVectorArrayMap<T> means_arr(mean_out->mutable_data<T>(ctx.GetPlace()),
                                     C);
    EigenVectorArrayMap<T> scales_arr(scales->mutable_data<T>(ctx.GetPlace()),
                                      C);
    means_arr = b_sum_arr / b_size_arr;
    scales_arr = (b_size_arr / b_square_sum_arr).sqrt();

310 311
    const T *means_data = mean_out->data<T>();
    const T *x_data = x->data<T>();
312

313 314 315
    const T *scales_data = scales->data<T>();
    const int slot_dim = ctx.Attr<int>("slot_dim");
    T min_precision = 1e-7f;
H
heqiaozhi 已提交
316
    switch (data_layout) {
317
      case DataLayout::kNCHW:  // It's two dimensions, so make no difference
H
heqiaozhi 已提交
318
      case DataLayout::kNHWC: {
319 320
        // if slot_dim is set and batch size is larger than zero, we choose
        // to check if show number is zero, if so, skip normalization.
321 322
        if (slot_dim > 0 && N > 0 &&
            (!ctx.Attr<bool>("enable_scale_and_shift"))) {
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
          const int item_size = x->numel() / N;
          // location of show number in one embedding
          int offset = 0;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (x_data[offset + i] > -min_precision &&
                  x_data[offset + i] < min_precision) {
                // show = 0
                memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
              } else {
                for (int j = i; j < i + slot_dim; ++j) {
                  y_data[offset + j] =
                      (x_data[offset + j] - means_data[j]) * scales_data[j];
                }
              }
            }

            offset += item_size;
          }
        } else {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
          if (!ctx.Attr<bool>("enable_scale_and_shift") && slot_dim <= 0) {
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() -
                 means_arr)
                    .colwise() *
                scales_arr;
          } else if (ctx.Attr<bool>("enable_scale_and_shift") &&
                     slot_dim <= 0) {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            ConstEigenVectorArrayMap<T> scale_w_arr(scale_w->data<T>(), C);
            ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);

            Eigen::Array<T, Eigen::Dynamic, 1> new_scale =
                scales_arr * scale_w_arr;
            Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
                bias_arr - means_arr * scales_arr * scale_w_arr;
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() *
                 new_scale)
                    .colwise() +
                new_bias;

          } else {
            const int item_size = x->numel() / N;
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            const T *scale_w_data = scale_w->data<T>();
            const T *bias_data = bias->data<T>();
            // location of show number in one embedding
            int offset = 0;
            for (int k = 0; k < N; ++k) {
              for (int i = 0; i < item_size; i += slot_dim) {
                if (x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision) {
                  // show = 0
                  memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
                } else {
                  for (int j = i; j < i + slot_dim; ++j) {
                    y_data[offset + j] = ((x_data[offset + j] - means_data[j]) *
                                          scales_data[j]) *
                                             scale_w_data[j] +
                                         bias_data[j];
                  }
                }
              }  // end for i

              offset += item_size;
            }  // end for k
          }
393
        }
H
heqiaozhi 已提交
394 395 396
        break;
      }
      default:
397
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
398
            "Unknown storage order: %d, please use NCHW or NHWC", data_layout));
H
heqiaozhi 已提交
399 400 401 402 403 404 405 406 407 408
    }
  }
};

class DataNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
409 410 411
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   framework::GradVarName("Y"), "DataNormGrad");
H
hutuxian 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BatchSize"), true,
        platform::errors::NotFound(
            "Output(BatchSize) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BatchSum"), true,
        platform::errors::NotFound(
            "Output(BatchSum) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BatchSquareSum"), true,
        platform::errors::NotFound(
            "Output(BatchSquareSum) of DataNormGradOp should not be null."));
424 425
    OP_INOUT_CHECK(ctx->HasInput("Means"), "Input", "Means", "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Scales"), "Input", "Scales", "DataNormGrad");
426 427
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
H
heqiaozhi 已提交
428
    // check output
429 430 431 432 433 434 435 436
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSize")),
                   "Output", framework::GradVarName("BatchSize"),
                   "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSum")), "Output",
                   framework::GradVarName("BatchSum"), "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSquareSum")),
                   "Output", framework::GradVarName("BatchSquareSum"),
                   "DataNormGrad");
H
heqiaozhi 已提交
437 438 439 440 441 442 443 444

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

445 446 447
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
H
heqiaozhi 已提交
448 449 450
    ctx->SetOutputDim(framework::GradVarName("BatchSize"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSum"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSquareSum"), {C});
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    if (enable_scale_and_shift) {
      const bool has_scale_grad =
          ctx->HasOutput(framework::GradVarName("scale_w"));
      const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("bias"));

      PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad), true,
                        platform::errors::InvalidArgument(
                            "Output(Scale@GRAD) and Output(Bias@GRAD)"
                            "must be null or not be null at same time. "
                            "But now, has Scale@Grad=[%d], has Bias@GRAD=[%d]",
                            has_scale_grad, has_bias_grad));
      if (has_scale_grad) {
        ctx->SetOutputDim(framework::GradVarName("scale_w"), {C});
        ctx->SetOutputDim(framework::GradVarName("bias"), {C});
      }
    }
H
heqiaozhi 已提交
467 468 469 470 471 472 473
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
474 475
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
476 477 478 479 480 481 482 483
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
484 485
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
486 487 488 489 490
    }

    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
491
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
492

H
heqiaozhi 已提交
493 494
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
495
        this->CanMKLDNNBeUsed(ctx, data_type)) {
H
heqiaozhi 已提交
496 497 498 499 500
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

501
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
H
heqiaozhi 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  }
};

template <typename T>
class DataNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scales = ctx.Input<Tensor>("Scales");
    const auto *means = ctx.Input<Tensor>("Means");

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
522 523 524
    PADDLE_ENFORCE_EQ(
        x_dims.size(), 2,
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
525 526 527 528 529
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    // init output
530 531 532 533
    Tensor *d_x = nullptr;
    if (ctx.HasOutput(framework::GradVarName("X"))) {
      d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    }
534

H
heqiaozhi 已提交
535 536 537 538 539 540
    auto *d_batch_size =
        ctx.Output<Tensor>(framework::GradVarName("BatchSize"));
    auto *d_batch_sum = ctx.Output<Tensor>(framework::GradVarName("BatchSum"));
    auto *d_batch_square_sum =
        ctx.Output<Tensor>(framework::GradVarName("BatchSquareSum"));

541 542 543 544 545
    const T *mean_data = means->data<T>();
    const T *inv_var_data = scales->data<T>();
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

546 547 548 549 550 551 552
    T *d_batch_size_data = d_batch_size->mutable_data<T>(ctx.GetPlace());
    T *d_batch_sum_data = d_batch_sum->mutable_data<T>(ctx.GetPlace());
    T *d_batch_square_sum_data =
        d_batch_square_sum->mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> d_batch_size_arr(d_batch_size_data, C);
    EigenVectorArrayMap<T> d_batch_sum_arr(d_batch_sum_data, C);
    EigenVectorArrayMap<T> d_batch_square_sum_arr(d_batch_square_sum_data, C);
H
heqiaozhi 已提交
553 554 555
    d_batch_size_arr.setZero();
    d_batch_sum_arr.setZero();
    d_batch_square_sum_arr.setZero();
556 557
    const T *x_data = x->data<T>();
    const T *means_data = means->data<T>();
H
heqiaozhi 已提交
558 559

    const float epsilon = ctx.Attr<float>("epsilon");
560 561 562
    T min_precision = 1e-7f;
    const int slot_dim = ctx.Attr<int>("slot_dim");
    switch (data_layout) {  // it's two dimensions, make no difference
H
heqiaozhi 已提交
563 564 565 566 567 568
      case DataLayout::kNCHW:
      case DataLayout::kNHWC: {
        ConstEigenVectorArrayMap<T> scales_arr(scales->data<T>(), C);
        ConstEigenVectorArrayMap<T> means_arr(means->data<T>(), C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N);
569 570 571
        if (d_x != nullptr) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C, N);
          d_x_arr.setZero();
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
          if (!ctx.Attr<bool>("enable_scale_and_shift")) {
            for (int nc = 0; nc < N; ++nc) {
              d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr;
            }
          } else {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            auto *d_scale =
                ctx.Output<Tensor>(framework::GradVarName("scale_w"));
            auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("bias"));
            ConstEigenVectorArrayMap<T> scale_arr(scale_w->data<T>(), C);
            T *d_bias_data = nullptr;
            T *d_scale_data = nullptr;

            d_scale->mutable_data<T>(ctx.GetPlace());
            d_bias->mutable_data<T>(ctx.GetPlace());
            d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
            d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());

            EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
            EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
            Tensor dy_sum;
            dy_sum.Resize({C});
            dy_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_sum_arr(
                dy_sum.mutable_data<T>(ctx.GetPlace()), C);
            Tensor dy_mul_x_sub_mean_mul_invstd_sum;
            dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
            dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
                dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(
                    ctx.GetPlace()),
                C);

            dy_sum_arr.setZero();
            dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

            if (slot_dim <= 0) {
              for (int n = 0; n < N; ++n) {
                dy_sum_arr += d_y_arr.col(n);
                dy_mul_x_sub_mean_mul_invstd_sum_arr +=
                    ((x_arr.col(n) - mean_arr) * inv_var_arr * d_y_arr.col(n));
              }
              if (d_scale && d_bias) {
                d_bias_arr = dy_sum_arr;
                d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
              }
              for (int nc = 0; nc < N; ++nc) {
                d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr * scale_arr;
              }
            } else {
              int offset = 0;
              const int item_size = x->numel() / N;
              T *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
              T *d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
              T *d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
              const T *dy_data = d_y->data<T>();
              const T *scales_data = scales->data<T>();
              const T *scale_w_data = scale_w->data<T>();
              const T *x_data = x->data<T>();
              for (int i = 0; i < item_size; i++) {
                d_bias_data[i] = 0;
                d_scale_data[i] = 0;
              }
              for (int k = 0; k < N; ++k) {
                for (int i = 0; i < item_size; i += slot_dim) {
                  if (!(x_data[offset + i] > -min_precision &&
                        x_data[offset + i] < min_precision)) {
                    // show != 0
                    for (int j = i; j < i + slot_dim; ++j) {
                      d_x_data[offset + j] = dy_data[offset + j] *
                                             scales_data[j] * scale_w_data[j];
                      d_bias_data[j] += dy_data[offset + j];
                      d_scale_data[j] += (x_data[offset + j] - mean_data[j]) *
                                         inv_var_data[j] * dy_data[offset + j];
                    }
                  }
                }
                offset += item_size;
              }
            }
652
          }
H
heqiaozhi 已提交
653 654
        }

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        if (slot_dim > 0 && N > 0) {
          // if slot_dim is set and batch size is larger than zero, we choose
          // to check if show number is zero, if so, skip update statistics.
          int offset = 0;
          const int item_size = x->numel() / N;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (!(x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision)) {
                // show != 0
                for (int j = i; j < i + slot_dim; ++j) {
                  d_batch_size_data[j] += 1;
                  d_batch_sum_data[j] += x_data[offset + j];
                  d_batch_square_sum_data[j] +=
                      (x_data[offset + j] - means_data[j]) *
                      (x_data[offset + j] - means_data[j]);
                }
              }
            }
            offset += item_size;
          }

          for (int i = 0; i < item_size; i += slot_dim) {
            for (int j = i; j < i + slot_dim; ++j) {
              if (d_batch_size_data[j] >= 1) {
                d_batch_sum_data[j] /= d_batch_size_data[j];
                d_batch_square_sum_data[j] =
                    d_batch_square_sum_data[j] / d_batch_size_data[j] +
                    d_batch_size_data[j] * epsilon;
                d_batch_size_data[j] = 1;
              }
            }
          }
        } else {
          // calculate data sum and squre sum
          Eigen::Array<T, Eigen::Dynamic, 1> sample_sum(C);
          Eigen::Array<T, Eigen::Dynamic, 1> sample_square_sum(C);
          // calculate data sample sum and square sum
          sample_sum.setZero();
          sample_square_sum.setZero();
          for (int nc = 0; nc < N; ++nc) {
            sample_sum += x_arr.col(nc);
            sample_square_sum += (x_arr.col(nc) - means_arr).square();
          }
          // calculate gradient
          d_batch_size_arr.setConstant(N);
          d_batch_sum_arr = sample_sum;
          d_batch_square_sum_arr =
              sample_square_sum + d_batch_size_arr * epsilon;
H
heqiaozhi 已提交
704 705 706 707
        }
        break;
      }
      default:
708
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
709 710
            "Unknown storage order: %s, please use NCHW or NHWC",
            data_layout_str));
H
heqiaozhi 已提交
711 712 713 714
    }
  }
};

H
hong 已提交
715 716
template <typename T>
class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
H
heqiaozhi 已提交
717
 public:
H
hong 已提交
718
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
heqiaozhi 已提交
719 720

 protected:
721
  void Apply(GradOpPtr<T> op) const override {
H
heqiaozhi 已提交
722
    op->SetType("data_norm_grad");
H
hong 已提交
723 724 725
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

726 727
    op->SetInput("scale_w", this->Input("scale_w"));
    op->SetInput("bias", this->Input("bias"));
H
hutuxian 已提交
728 729 730
    op->SetOutput("BatchSize", this->Input("BatchSize"));
    op->SetOutput("BatchSum", this->Input("BatchSum"));
    op->SetOutput("BatchSquareSum", this->Input("BatchSquareSum"));
H
hong 已提交
731 732 733 734 735 736 737 738 739 740
    op->SetInput("Scales", this->Output("Scales"));
    op->SetInput("Means", this->Output("Means"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("BatchSize"),
                  this->InputGrad("BatchSize"));
    op->SetOutput(framework::GradVarName("BatchSum"),
                  this->InputGrad("BatchSum"));
H
heqiaozhi 已提交
741
    op->SetOutput(framework::GradVarName("BatchSquareSum"),
H
hong 已提交
742
                  this->InputGrad("BatchSquareSum"));
743 744 745
    op->SetOutput(framework::GradVarName("scale_w"),
                  this->InputGrad("scale_w"));
    op->SetOutput(framework::GradVarName("bias"), this->InputGrad("bias"));
H
heqiaozhi 已提交
746 747 748 749 750 751 752 753
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(data_norm, ops::DataNormOp, ops::DataNormOpMaker,
H
hong 已提交
754 755
                  ops::DataNormGradMaker<paddle::framework::OpDesc>,
                  ops::DataNormGradMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
756 757 758 759 760 761 762 763 764
REGISTER_OPERATOR(data_norm_grad, ops::DataNormGradOp);

REGISTER_OP_CPU_KERNEL(
    data_norm, ops::DataNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DataNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    data_norm_grad,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, double>);
765 766
REGISTER_OP_VERSION(data_norm).AddCheckpoint(
    R"ROC(
767
              upgrad data_norm op by adding scale_w to support scale and shift.)ROC",
768 769 770
    paddle::framework::compatible::OpVersionDesc().NewInput(
        "scale_w",
        "scale_w is used to do scale duirng data_norm like batchnorm "));