data_norm_op.cc 16.3 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/data_norm_op.h"
P
phlrain 已提交
16
#include <memory>
H
heqiaozhi 已提交
17 18
#include <string>
#include "paddle/fluid/framework/data_layout.h"
H
heqiaozhi 已提交
19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
H
heqiaozhi 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class DataNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSize"), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSum"), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSquareSum"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Means"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Scales"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "Input X must have 2 to 5 dimensions.");

    const int64_t C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(), 1UL);
P
phlrain 已提交
69 70 71 72 73
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0], C);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0], C);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0], C);
    }
H
heqiaozhi 已提交
74 75 76 77 78 79 80 81 82 83

    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("Means", {C});
    ctx->SetOutputDim("Scales", {C});
    ctx->ShareLoD("X", "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
84
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
85 86 87 88 89 90 91
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto dn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      dn_param_type = framework::proto::VarType::FP64;
    }
92 93
    PADDLE_ENFORCE_EQ(dn_param_type,
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSize"),
H
heqiaozhi 已提交
94 95
                      "BatchSize input should be of float type");
    PADDLE_ENFORCE_EQ(dn_param_type,
96 97 98 99
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSum"),
                      "BatchSum input should be of float type");
    PADDLE_ENFORCE_EQ(dn_param_type, OperatorWithKernel::IndicateVarDataType(
                                         ctx, "BatchSquareSum"),
H
heqiaozhi 已提交
100 101 102 103 104
                      "BatchSquareSum input should be of float type");

    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
H
heqiaozhi 已提交
105 106 107 108 109 110 111
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
H
heqiaozhi 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class DataNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    // AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-4)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
129 130 131
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
H
heqiaozhi 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    AddInput("X", "The input tensor");
    AddInput("BatchSize",
             "BatchSize is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSum",
             "BatchSum is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSquareSum",
             "The global BatchSquareSum (for training) or "
             "estimated BatchSquareSum (for testing)");
    AddOutput("Y", "result after normalization");
    AddOutput("Means",
              "Mean of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddOutput("Scales",
              "Scales of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddComment(R"DOC(
Data Normalization.

Can be used as a normalizer function for data
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
  }
};

template <typename T>
class DataNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    // const bool is_test = ctx.Attr<bool>("is_test");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
    PADDLE_ENFORCE(x_dims.size() == 2, "The Input dim size should be 2");
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("Means");
    auto *scales = ctx.Output<Tensor>("Scales");

    // alloc memory
    y->mutable_data<T>(ctx.GetPlace());

    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    ConstEigenVectorArrayMap<T> b_size_arr(
        ctx.Input<Tensor>("BatchSize")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_sum_arr(
        ctx.Input<Tensor>("BatchSum")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_square_sum_arr(
        ctx.Input<Tensor>("BatchSquareSum")->data<T>(), C);
    EigenVectorArrayMap<T> means_arr(mean_out->mutable_data<T>(ctx.GetPlace()),
                                     C);
    EigenVectorArrayMap<T> scales_arr(scales->mutable_data<T>(ctx.GetPlace()),
                                      C);
    means_arr = b_sum_arr / b_size_arr;
    scales_arr = (b_size_arr / b_square_sum_arr).sqrt();

    switch (data_layout) {
      case DataLayout::kNCHW:  // because it's two dimensions, so make no
                               // difference
      case DataLayout::kNHWC: {
        EigenArrayMap<T>(y->mutable_data<T>(ctx.GetPlace()), C, N) =
            (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() - means_arr)
                .colwise() *
            scales_arr;
        break;
      }
      default:
        PADDLE_THROW("Unknown storage order: %d", data_layout);
    }
  }
};

class DataNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSize"), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSum"), "");
    PADDLE_ENFORCE(ctx->HasInput("BatchSquareSum"), "");
    PADDLE_ENFORCE(ctx->HasInput("Means"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scales"), "");

    // check output
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSize")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSum")), "");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("BatchSquareSum")),
                   "");

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

244 245 246
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
H
heqiaozhi 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    ctx->SetOutputDim(framework::GradVarName("BatchSize"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSum"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSquareSum"), {C});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }

    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

H
heqiaozhi 已提交
273 274 275 276 277 278 279 280
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

281 282 283
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout, library);
H
heqiaozhi 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  }
};

template <typename T>
class DataNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *batch_size = ctx.Input<Tensor>("BatchSize");
    const auto *batch_sum = ctx.Input<Tensor>("BatchSum");
    const auto *batch_square_sum = ctx.Input<Tensor>("BatchSquareSum");
    const auto *scales = ctx.Input<Tensor>("Scales");
    const auto *means = ctx.Input<Tensor>("Means");

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
    PADDLE_ENFORCE(x_dims.size() == 2, "The Input dim size should be 2");
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

    // init output
314 315 316 317
    Tensor *d_x = nullptr;
    if (ctx.HasOutput(framework::GradVarName("X"))) {
      d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    }
H
heqiaozhi 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    auto *d_batch_size =
        ctx.Output<Tensor>(framework::GradVarName("BatchSize"));
    auto *d_batch_sum = ctx.Output<Tensor>(framework::GradVarName("BatchSum"));
    auto *d_batch_square_sum =
        ctx.Output<Tensor>(framework::GradVarName("BatchSquareSum"));

    EigenVectorArrayMap<T> d_batch_size_arr(
        d_batch_size->mutable_data<T>(ctx.GetPlace()), C);
    EigenVectorArrayMap<T> d_batch_sum_arr(
        d_batch_sum->mutable_data<T>(ctx.GetPlace()), C);
    EigenVectorArrayMap<T> d_batch_square_sum_arr(
        d_batch_square_sum->mutable_data<T>(ctx.GetPlace()), C);

    d_batch_size_arr.setZero();
    d_batch_sum_arr.setZero();
    d_batch_square_sum_arr.setZero();

    const float epsilon = ctx.Attr<float>("epsilon");
    switch (
        data_layout) {  // because it's two dimensions, so make no difference
      case DataLayout::kNCHW:
      case DataLayout::kNHWC: {
        ConstEigenVectorArrayMap<T> scales_arr(scales->data<T>(), C);
        ConstEigenVectorArrayMap<T> means_arr(means->data<T>(), C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N);
344 345 346 347 348 349
        if (d_x != nullptr) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C, N);
          d_x_arr.setZero();
          for (int nc = 0; nc < N; ++nc) {
            d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr;
          }
H
heqiaozhi 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        }

        // calculate data sum and squre sum
        ConstEigenVectorArrayMap<T> batch_size_arr(batch_size->data<T>(), C);
        ConstEigenVectorArrayMap<T> batch_sum_arr(batch_sum->data<T>(), C);
        ConstEigenVectorArrayMap<T> batch_square_sum_arr(
            batch_square_sum->data<T>(), C);
        Eigen::Array<T, Eigen::Dynamic, 1> sample_sum(C);
        Eigen::Array<T, Eigen::Dynamic, 1> sample_square_sum(C);
        // calculate data sample sum and square sum
        sample_sum.setZero();
        sample_square_sum.setZero();
        for (int nc = 0; nc < N; ++nc) {
          sample_sum += x_arr.col(nc);
          sample_square_sum += (x_arr.col(nc) - means_arr).square();
        }
        // calculate gradient
        d_batch_size_arr.setConstant(N);
        d_batch_sum_arr = sample_sum;
        d_batch_square_sum_arr = sample_square_sum + d_batch_size_arr * epsilon;
        break;
      }
      default:
        PADDLE_THROW("Unknown storage order: %s", data_layout_str);
    }
  }
};

H
hong 已提交
378 379
template <typename T>
class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
H
heqiaozhi 已提交
380
 public:
H
hong 已提交
381
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
heqiaozhi 已提交
382 383

 protected:
H
hong 已提交
384 385
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
H
heqiaozhi 已提交
386
    op->SetType("data_norm_grad");
H
hong 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetInput("BatchSize", this->Input("BatchSize"));
    op->SetInput("BatchSum", this->Input("BatchSum"));
    op->SetInput("BatchSquareSum", this->Input("BatchSquareSum"));
    op->SetInput("Scales", this->Output("Scales"));
    op->SetInput("Means", this->Output("Means"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("BatchSize"),
                  this->InputGrad("BatchSize"));
    op->SetOutput(framework::GradVarName("BatchSum"),
                  this->InputGrad("BatchSum"));
H
heqiaozhi 已提交
403
    op->SetOutput(framework::GradVarName("BatchSquareSum"),
H
hong 已提交
404
                  this->InputGrad("BatchSquareSum"));
H
heqiaozhi 已提交
405

H
hong 已提交
406
    return std::unique_ptr<T>(op);
H
heqiaozhi 已提交
407 408 409 410 411 412 413 414
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(data_norm, ops::DataNormOp, ops::DataNormOpMaker,
H
hong 已提交
415 416
                  ops::DataNormGradMaker<paddle::framework::OpDesc>,
                  ops::DataNormGradMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
417 418 419 420 421 422 423 424 425
REGISTER_OPERATOR(data_norm_grad, ops::DataNormGradOp);

REGISTER_OP_CPU_KERNEL(
    data_norm, ops::DataNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DataNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    data_norm_grad,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, double>);