operator.h 18.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
34
#include "paddle/fluid/framework/operator_kernel_configs.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
38
#include "paddle/fluid/framework/unused_var_check.h"
39
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
40 41
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
42

Q
Qiao Longfei 已提交
43 44
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
45 46 47
namespace paddle {
namespace framework {

48
/// If a variable is a empty variable, that name will be used.
49
constexpr char kEmptyVarName[] = "@EMPTY@";
50 51 52

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
53
constexpr char kTempVarName[] = "@TEMP@";
54 55

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
56 57
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
58
constexpr char kGradVarSuffix[] = "@GRAD";
59

M
minqiyang 已提交
60 61
constexpr size_t kGradVarSuffixSize = 5U;

62
/// Variables with this suffix are supposed to be filled up with zeros.
63
constexpr char kZeroVarSuffix[] = "@ZERO";
64

C
chengduo 已提交
65 66 67
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
68 69 70 71 72 73 74 75
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
76 77 78 79 80 81 82 83 84
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
85
// define some kernel priority
86
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
87 88
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

89
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
90 91 92 93 94
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
95 96
}

M
minqiyang 已提交
97
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
98
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
99 100 101 102 103
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
104 105
}

C
chengduo 已提交
106 107
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
108

Q
Qiao Longfei 已提交
109
class OperatorBase;
110
class ExecutionContext;
111

X
Xin Pan 已提交
112 113
class RuntimeContext {
 public:
X
Xin Pan 已提交
114 115
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
116

X
Xin Pan 已提交
117 118 119 120
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
121 122 123 124
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
125
/**
X
Xin Pan 已提交
126
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
127 128 129 130 131 132
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
133 134
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
135

Q
Qiao Longfei 已提交
136 137
  virtual ~OperatorBase() {}

138
  /// Executor will call this interface function to Run an op.
139 140
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
141

T
typhoonzero 已提交
142 143 144
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

145 146 147
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
148

149 150
  virtual bool SupportGPU() const { return false; }

151 152
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
153
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
154 155
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
156 157
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
158 159 160
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
161

Y
Yu Yang 已提交
162 163
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
164

S
sneaxiy 已提交
165 166 167 168 169
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

170
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
171
  //! Get a input with argument's name described in `op_proto`
172
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
173
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
174
  const std::vector<std::string>& Inputs(const std::string& name) const;
175
  //! Get all inputs variable names
Q
qijun 已提交
176 177
  std::vector<std::string> InputVars() const;

178
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
179
  //! Get a output with argument's name described in `op_proto`
180
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
181 182
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
183
  const std::vector<std::string>& Outputs(const std::string& name) const;
184
  //! Get all outputs variable names
Y
Yu Yang 已提交
185
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
186

187
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
188

B
baojun-nervana 已提交
189
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
190 191
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
192

Q
qiaolongfei 已提交
193
 protected:
Q
Qiao Longfei 已提交
194
  std::string type_;
D
dongzhihong 已提交
195
  // NOTE: in case of OpGrad, inputs_ contains:
196
  // I (Inputs)
D
dongzhihong 已提交
197 198
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
199
  VariableNameMap inputs_;
Y
Yu Yang 已提交
200

D
dongzhihong 已提交
201 202
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
203
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
204
  AttributeMap attrs_;
S
sneaxiy 已提交
205 206 207 208

  // OpInfo
  const OpInfo* info_;

209 210
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
211 212 213 214

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
215 216
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
217 218
};

219 220 221 222 223 224 225 226 227 228 229 230 231
#ifdef PADDLE_WITH_CUDA
using KernelConfig = boost::variant<
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>,
    std::shared_ptr<AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>>;
#else
using KernelConfig = boost::variant<boost::blank>;
#endif

using OpKernelConfigsMap =
    std::unordered_map<OpKernelType, std::vector<KernelConfig>,
                       OpKernelType::Hash>;

232
class ExecutionContext {
Y
Yan Chunwei 已提交
233
 public:
234
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
235
                   const platform::DeviceContext& device_context,
236 237 238 239 240 241 242
                   const RuntimeContext& ctx,
                   std::vector<KernelConfig>* configs)
      : op_(op),
        scope_(scope),
        device_context_(device_context),
        ctx_(ctx),
        kernel_configs_(configs) {}
H
hong 已提交
243
  virtual ~ExecutionContext() {}
244

H
hong 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
265 266 267

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
268
  template <typename T>
Y
Yu Yang 已提交
269
  inline const T& Attr(const std::string& name) const {
H
hong 已提交
270
    return boost::get<T>(GetAttr(name));
Q
qiaolongfei 已提交
271 272
  }

H
hong 已提交
273 274 275
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
276

H
hong 已提交
277
  virtual bool HasInput(const std::string& name) const;
278

H
hong 已提交
279
  virtual bool HasOutput(const std::string& name) const;
280

H
hong 已提交
281
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
282
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
283 284
  }

H
hong 已提交
285
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
286
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
287 288
  }

H
hong 已提交
289
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
290

H
hong 已提交
291
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
292

H
hong 已提交
293
  virtual const std::vector<Variable*> MultiInputVar(
294
      const std::string& name) const {
295 296
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
297 298 299 300
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
301
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
302 303
  }

H
hong 已提交
304
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
305 306 307 308 309 310 311
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
312 313 314 315 316 317 318 319 320 321 322
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

323 324
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
325
    auto* var = InputVar(name);
326
    return var == nullptr ? nullptr : &var->Get<T>();
327 328 329 330
  }

  template <typename T>
  T* Output(const std::string& name) const {
331
    auto var = OutputVar(name);
332
    return var == nullptr ? nullptr : var->GetMutable<T>();
333 334 335 336
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
337 338
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
339 340
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
341 342 343 344 345
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
346
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
347 348 349 350 351 352 353
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
354 355 356
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
357 358
      return {};
    }
H
hong 已提交
359

X
Xin Pan 已提交
360 361 362 363 364 365
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
366

X
Xin Pan 已提交
367 368 369
    return res;
  }

370
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
371

Q
QI JUN 已提交
372 373 374 375 376
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

377
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
378
    return device_context_;
Q
qijun 已提交
379
  }
Q
qijun 已提交
380

Q
QI JUN 已提交
381 382
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
383
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true);
Q
QI JUN 已提交
384 385 386 387 388
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
389 390 391
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
392
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
393 394 395 396 397
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

398
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
399 400 401 402 403 404 405 406 407
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

408 409 410 411 412 413 414 415 416
  template <typename T>
  T& GetKernelConfig(size_t idx) const {
    PADDLE_ENFORCE(
        kernel_configs_ && kernel_configs_->size() > static_cast<size_t>(idx),
        "%s selected kernel doesn't have kernel config %lu <= %lu",
        op_.Type().c_str(), kernel_configs_->size(), idx);
    return *boost::get<std::shared_ptr<T>>((*kernel_configs_)[idx]);
  }

H
hong 已提交
417 418 419
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
420

421
 private:
422 423
  const OperatorBase& op_;
  const Scope& scope_;
424
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
425
  const RuntimeContext& ctx_;
426
  mutable std::vector<KernelConfig>* kernel_configs_;
Q
Qiao Longfei 已提交
427 428
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
443
class OpKernelBase {
Q
qijun 已提交
444
 public:
Q
qijun 已提交
445
  /**
446
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
447 448
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
449
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
450 451
   */

452
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
453

Y
Yu Yang 已提交
454 455 456 457 458 459 460
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
461 462
};

Y
Yu Yang 已提交
463 464
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
465
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
466
  using OpKernelMap =
Y
yuyang18 已提交
467
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
468

Y
Yu Yang 已提交
469 470
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
471 472
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
473 474 475 476
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
477
  }
Y
Yan Chunwei 已提交
478

479 480 481 482 483
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

484
  bool SupportGPU() const override {
Y
Yu Yang 已提交
485 486 487 488 489
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
490 491
  }

492
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
493

X
Xin Pan 已提交
494 495
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
496

497 498 499
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

500
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
501

502 503
  std::vector<KernelConfig>* GetKernelConfig(const OpKernelType& key) const;

504 505
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
506 507 508
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
509 510

 private:
511 512
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
513
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
514
  // same.
515
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
516
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
517 518
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
519 520

  /**
T
tianshuo78520a 已提交
521 522
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
523 524 525 526
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
527 528 529 530
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
531 532 533 534

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
535

L
Liu Yiqun 已提交
536 537 538
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

539
 protected:
540
  mutable OpKernelConfigsMap kernel_configs_map_;
L
Liu Yiqun 已提交
541 542
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
543 544
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
545
  mutable bool need_prepare_data_ = true;
546 547
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
548
  mutable std::mutex cache_update_mutex_;
549
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
550 551
};

Y
Yu Yang 已提交
552 553
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
554 555
}  // namespace framework
}  // namespace paddle