mean_op.cc 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
C
chengduo 已提交
16
#include <string>
S
sneaxiy 已提交
17 18
#include <unordered_map>

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
23

L
liaogang 已提交
24 25 26
namespace paddle {
namespace operators {

D
dongzhihong 已提交
27
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
L
liaogang 已提交
30 31
};

D
dongzhihong 已提交
32
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
33
 public:
Y
Yu Yang 已提交
34
  void Make() override {
T
tensor-tang 已提交
35
    AddInput("X", "(Tensor) The input of mean op");
36
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
37
    AddComment(R"DOC(
T
tensor-tang 已提交
38
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
39

40
)DOC");
L
liaogang 已提交
41 42 43
  }
};

C
chengduo 已提交
44 45
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
46
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
47
      const override {
48 49
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
50 51 52
  }
};

D
dongzhihong 已提交
53
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
54 55 56
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

57
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
58
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
59
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
60
  }
C
chengduo 已提交
61 62 63

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
64 65
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
C
chengduo 已提交
66 67
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
68 69
};

H
hong 已提交
70 71
template <typename T>
class MeanGradMaker : public framework::SingleGradOpMaker<T> {
72
 public:
H
hong 已提交
73
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
74 75

 protected:
76
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
77
    grad_op->SetType("mean_grad");
H
hong 已提交
78 79 80
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
81 82 83
  }
};

84
DECLARE_NO_NEED_BUFFER_VARS_INFERER(MeanGradNoNeedBufferVarsInferer, "X");
S
sneaxiy 已提交
85

L
liaogang 已提交
86 87 88
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
89
namespace ops = paddle::operators;
90 91
DECLARE_INFER_SHAPE_FUNCTOR(mean, MeanInferShapeFunctor,
                            PD_INFER_META(phi::MeanAllInferMeta));
C
chengduo 已提交
92
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
H
hong 已提交
93
                  ops::MeanGradMaker<paddle::framework::OpDesc>,
94 95 96
                  ops::MeanGradMaker<paddle::imperative::OpBase>,
                  MeanInferShapeFunctor);

S
sneaxiy 已提交
97
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
98
                  ops::MeanGradNoNeedBufferVarsInferer);