mean_op.cc 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mean_op.h"
C
chengduo 已提交
16
#include <string>
L
liaogang 已提交
17 18 19
namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27 28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of MeanOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MeanOp should not be null.");
    ctx->SetOutputDim("Out", {1});
L
liaogang 已提交
30 31 32
  }
};

D
dongzhihong 已提交
33
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
34
 public:
Y
Yu Yang 已提交
35
  void Make() override {
T
tensor-tang 已提交
36
    AddInput("X", "(Tensor) The input of mean op");
37
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
38
    AddComment(R"DOC(
T
tensor-tang 已提交
39
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
40

41
)DOC");
L
liaogang 已提交
42 43 44
  }
};

C
chengduo 已提交
45 46 47 48 49 50 51 52
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
53
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
54 55 56
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

57
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
58
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
59
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
60
  }
C
chengduo 已提交
61 62 63

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
64
    auto input_data_type = ctx.Input<Tensor>("X")->type();
C
chengduo 已提交
65 66
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
67 68
};

69 70 71 72 73
class MeanGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
74 75
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
76 77 78 79
    grad_op->SetType("mean_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
Y
Yu Yang 已提交
80
    return std::unique_ptr<framework::OpDesc>(grad_op);
81 82 83
  }
};

L
liaogang 已提交
84 85 86
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
87
namespace ops = paddle::operators;
C
chengduo 已提交
88 89
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
                  ops::MeanGradMaker);
90
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp);
Q
QI JUN 已提交
91 92 93 94 95 96
REGISTER_OP_CPU_KERNEL(
    mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    mean_grad, ops::MeanGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanGradKernel<paddle::platform::CPUDeviceContext, double>);