mean_op.cc 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mean_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
chengduo 已提交
17
#include <string>
S
sneaxiy 已提交
18 19
#include <unordered_map>

L
liaogang 已提交
20 21 22
namespace paddle {
namespace operators {

D
dongzhihong 已提交
23
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mean");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "mean");
Q
Qiao Longfei 已提交
30
    ctx->SetOutputDim("Out", {1});
L
liaogang 已提交
31 32 33
  }
};

D
dongzhihong 已提交
34
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
35
 public:
Y
Yu Yang 已提交
36
  void Make() override {
T
tensor-tang 已提交
37
    AddInput("X", "(Tensor) The input of mean op");
38
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
39
    AddComment(R"DOC(
T
tensor-tang 已提交
40
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
41

42
)DOC");
L
liaogang 已提交
43 44 45
  }
};

C
chengduo 已提交
46 47
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
48
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
49
      const override {
50 51
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
52 53 54
  }
};

D
dongzhihong 已提交
55
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
56 57 58
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

59
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
60
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
61
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
62
  }
C
chengduo 已提交
63 64 65

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
66 67
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
C
chengduo 已提交
68 69
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
70 71
};

H
hong 已提交
72 73
template <typename T>
class MeanGradMaker : public framework::SingleGradOpMaker<T> {
74
 public:
H
hong 已提交
75
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
76 77

 protected:
78
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
79
    grad_op->SetType("mean_grad");
H
hong 已提交
80 81 82
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
83 84 85
  }
};

86
DECLARE_NO_NEED_BUFFER_VARS_INFERER(MeanGradNoNeedBufferVarsInference, "X");
S
sneaxiy 已提交
87

L
liaogang 已提交
88 89 90
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
91
namespace ops = paddle::operators;
C
chengduo 已提交
92
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
H
hong 已提交
93 94
                  ops::MeanGradMaker<paddle::framework::OpDesc>,
                  ops::MeanGradMaker<paddle::imperative::OpBase>);
S
sneaxiy 已提交
95 96
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
                  ops::MeanGradNoNeedBufferVarsInference);
Q
QI JUN 已提交
97 98 99 100 101 102
REGISTER_OP_CPU_KERNEL(
    mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    mean_grad, ops::MeanGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanGradKernel<paddle::platform::CPUDeviceContext, double>);