mean_op.cc 3.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
C
chengduo 已提交
16
#include <string>
S
sneaxiy 已提交
17 18
#include <unordered_map>

19 20
#include "paddle/fluid/framework/op_registry.h"

L
liaogang 已提交
21 22 23
namespace paddle {
namespace operators {

D
dongzhihong 已提交
24
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
29 30
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "mean");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "mean");
Q
Qiao Longfei 已提交
31
    ctx->SetOutputDim("Out", {1});
L
liaogang 已提交
32 33 34
  }
};

D
dongzhihong 已提交
35
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
36
 public:
Y
Yu Yang 已提交
37
  void Make() override {
T
tensor-tang 已提交
38
    AddInput("X", "(Tensor) The input of mean op");
39
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
40
    AddComment(R"DOC(
T
tensor-tang 已提交
41
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
42

43
)DOC");
L
liaogang 已提交
44 45 46
  }
};

C
chengduo 已提交
47 48
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
49
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
50
      const override {
51 52
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
53 54 55
  }
};

D
dongzhihong 已提交
56
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
57 58 59
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

60
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
61
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
62
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
63
  }
C
chengduo 已提交
64 65 66

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
67 68
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
C
chengduo 已提交
69 70
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
71 72
};

H
hong 已提交
73 74
template <typename T>
class MeanGradMaker : public framework::SingleGradOpMaker<T> {
75
 public:
H
hong 已提交
76
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
77 78

 protected:
79
  void Apply(GradOpPtr<T> grad_op) const override {
Y
Yu Yang 已提交
80
    grad_op->SetType("mean_grad");
H
hong 已提交
81 82 83
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
84 85 86
  }
};

87
DECLARE_NO_NEED_BUFFER_VARS_INFERER(MeanGradNoNeedBufferVarsInferer, "X");
S
sneaxiy 已提交
88

L
liaogang 已提交
89 90 91
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
92
namespace ops = paddle::operators;
C
chengduo 已提交
93
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
H
hong 已提交
94 95
                  ops::MeanGradMaker<paddle::framework::OpDesc>,
                  ops::MeanGradMaker<paddle::imperative::OpBase>);
S
sneaxiy 已提交
96
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
97
                  ops::MeanGradNoNeedBufferVarsInferer);