downpour_worker.cc 35.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/platform/cpu_helper.h"
18
#include "paddle/fluid/string/string_helper.h"
19

20 21 22 23 24
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

25 26 27
namespace paddle {
namespace framework {

28
void DownpourWorker::Initialize(const TrainerDesc& desc) {
29
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
30
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
31 32 33 34
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
35
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
36 37 38
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
39
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
40 41 42
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
43
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
44 45
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
46
    label_var_name_[table_id] = table.label_var_name();
47
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
48 49
  }

D
dongdaxiang 已提交
50
  for (int i = 0; i < param_.dense_table_size(); ++i) {
51 52 53
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
54
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
55 56 57
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
58
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
59 60 61 62 63
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
64
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
65 66
    skip_ops_[i] = param_.skip_ops(i);
  }
67

68 69 70 71
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

72 73 74
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

75
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
76
  fetch_config_ = desc.fetch_config();
77
  use_cvm_ = desc.use_cvm();
78 79
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
80
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
81
  dump_slot_ = desc.dump_slot();
82 83 84 85
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
86
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
87 88 89 90 91 92 93 94
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
95 96 97
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

template <typename T>
std::string PrintLodTensorType(LoDTensor* tensor, int64_t start, int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << tensor->data<T>()[i];
  }
  return os.str();
}

std::string PrintLodTensorIntType(LoDTensor* tensor, int64_t start,
                                  int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
  }
  return os.str();
}

std::string PrintLodTensor(LoDTensor* tensor, int64_t start, int64_t end) {
  std::string out_val;
  if (tensor->type() == proto::VarType::FP32) {
    out_val = PrintLodTensorType<float>(tensor, start, end);
  } else if (tensor->type() == proto::VarType::INT64) {
    out_val = PrintLodTensorIntType(tensor, start, end);
  } else if (tensor->type() == proto::VarType::FP64) {
    out_val = PrintLodTensorType<double>(tensor, start, end);
  } else {
    out_val = "unsupported type";
  }
  return out_val;
}

std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index) {
  auto& dims = tensor->dims();
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    return {lod[index] * dims[1], lod[index + 1] * dims[1]};
  } else {
    return {index * dims[1], (index + 1) * dims[1]};
  }
}

183
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size) {
184 185 186 187 188 189 190 191
  auto& dims = tensor->dims();
  if (dims.size() != 2) return false;
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    if (lod.size() != batch_size + 1) {
      return false;
    }
  } else {
192
    if (dims[0] != static_cast<int>(batch_size)) {
193 194 195 196 197 198
      return false;
    }
  }
  return true;
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
void DownpourWorker::DumpParam() {
  std::string os;
  for (auto& param : dump_param_) {
    os.clear();
    os = param;
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    os += PrintLodTensor(tensor, 0, len);
    writer_ << os;
  }
}

215
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
216 217 218
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
219
  uint64_t table_id = static_cast<uint64_t>(
220
      param_.program_config(0).pull_sparse_table_id(table_idx));
221

H
heqiaozhi 已提交
222 223 224 225 226 227 228
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
229 230 231
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
232
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
233 234 235
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
236
  size_t global_index = 0;
237
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
238 239
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
240
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
241 242 243
    if (fea_var == nullptr) {
      continue;
    }
244
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
245 246
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
247 248 249 250 251 252 253 254

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

255
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
256
    size_t fea_idx = 0;
257
    // tensor->lod()[0].size() == batch_size + 1
258 259
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
260 261 262 263
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
264 265
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
266 267 268 269 270 271 272 273
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
274
  uint64_t table_id = static_cast<uint64_t>(
275
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
276 277 278 279 280 281 282 283

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
284 285 286 287

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
288
  std::vector<float> init_value(table.fea_dim());
289 290 291 292
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
293 294 295
    if (var == nullptr) {
      continue;
    }
296
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
297
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
298 299 300
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
301 302 303
    if (var_emb == nullptr) {
      continue;
    }
304 305 306 307 308 309 310
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
311 312 313 314 315 316 317 318

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
319
    for (int index = 0; index < len; ++index) {
320
      if (use_cvm_ || no_cvm_) {
321 322 323
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
324 325 326 327
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
328 329 330 331
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
332 333
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
334 335 336
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
337 338 339 340 341
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
342 343 344 345
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
346 347 348
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
349
               sizeof(float) * table.emb_dim());
350 351
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
352 353 354
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
355
        fea_idx++;
356 357 358 359 360
      }
    }
  }
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
407
  for (size_t i = 0; i < len; ++i) {
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

533 534 535
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
561
  double adjust_ins_weight_time = 0.0;
562 563 564 565
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
566
  double copy_table_time = 0.0;
567 568
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
569
  uint64_t total_inst = 0;
570 571 572 573 574
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

596
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
597
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
598 599 600 601
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
602 603 604
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
605 606 607 608
          break;
        }
      }
      timeline.Start();
609 610 611
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
612 613
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
614
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
615
      timeline.Start();
616 617 618
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
619
      total_time += timeline.ElapsedSec();
620 621 622 623
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
624
      total_time += timeline.ElapsedSec();
625 626 627 628 629 630 631 632 633 634
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
635 636 637 638 639 640 641 642 643 644 645 646 647 648
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
649
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
650
        op->Run(*thread_scope_, place_);
651
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
652 653 654 655 656 657
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

674
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
675 676
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
677 678 679 680 681 682 683 684
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
685
        }
686 687 688 689
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
690
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
691
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
692 693 694
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
695
      }
696 697 698
    }

    if (need_to_push_dense_) {
699
      timeline.Start();
D
dongdaxiang 已提交
700 701
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
702 703 704
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
705 706
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
707
      }
708
      timeline.Pause();
709
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
710
      total_time += timeline.ElapsedSec();
711 712 713 714 715 716 717 718 719
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
720 721
      }

722 723
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
724 725 726
      }
    }

727
    if (need_to_push_sparse_) {
728 729 730
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
731 732 733 734 735 736
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
737

738 739 740
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
741

742 743 744
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
745 746 747
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
748 749
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
750 751 752 753
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
754 755
    }

D
dongdaxiang 已提交
756
    PrintFetchVars();
757
    thread_scope_->DropKids();
D
dongdaxiang 已提交
758
    total_inst += cur_batch;
759 760 761 762 763
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
764 765
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
766 767 768
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
769 770 771 772 773 774 775 776 777
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
778
        }
779 780 781 782 783 784 785 786 787 788 789
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
790 791
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
792
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
793 794
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
795
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
796 797
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
798 799
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
800 801
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
802 803 804 805 806 807 808 809
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
810
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
811 812
      }
    }
D
dongdaxiang 已提交
813
    timeline.Start();
814
  }
X
xujiaqi01 已提交
815 816 817 818 819
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
820 821
}

822
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
823
  VLOG(3) << "Begin to train files";
824
  platform::SetNumThreads(1);
825
  device_reader_->Start();
826 827
  int batch_cnt = 0;
  int cur_batch;
828
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
843
    // pull sparse here
D
dongdaxiang 已提交
844
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
845 846 847 848
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
849 850 851
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
852 853 854
          break;
        }
      }
855 856 857
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
858 859
      CollectLabelInfo(i);
      FillSparseValue(i);
860 861 862 863 864 865
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
866
    }
D
dongdaxiang 已提交
867
    VLOG(3) << "fill sparse value for all sparse table done.";
868 869 870

    // do computation here
    for (auto& op : ops_) {
871 872 873 874 875 876 877 878 879 880
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
881 882
    }

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

899 900
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
901 902
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
903 904 905 906 907 908 909 910
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
911
        }
912 913 914
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
915
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
916
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
H
heqiaozhi 已提交
917
      }
918 919
    }

920
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
921 922
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
923 924 925
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
926 927
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
928 929
      }
      VLOG(3) << "push dense gradient done.";
930

931 932 933 934 935
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
936

937 938 939 940 941
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
942 943
      }

944 945 946
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
947 948
    }

949 950 951 952 953 954 955 956 957 958
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
959 960
      }

961 962 963
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
964 965
    }

966
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
967 968
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
969 970 971 972
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
973
    }
974
    if (need_dump_field_) {
975
      size_t batch_size = device_reader_->GetCurBatchSize();
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
995
        for (size_t i = 0; i < batch_size; ++i) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
1011 1012 1013
      if (need_dump_param_ && thread_id_ == 0) {
        DumpParam();
      }
1014
    }
1015

D
dongdaxiang 已提交
1016
    PrintFetchVars();
1017 1018 1019
    thread_scope_->DropKids();
    ++batch_cnt;
  }
1020 1021 1022
  if (need_dump_field_) {
    writer_.Flush();
  }
X
xujiaqi01 已提交
1023 1024 1025 1026 1027
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1028 1029 1030 1031
}

}  // end namespace framework
}  // end namespace paddle