dataset.py 39.1 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
77
        self.use_ps_gpu = False
78
        self.psgpu = None
D
dongdaxiang 已提交
79 80 81 82 83 84

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

85 86 87 88 89 90
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
91 92

        Args:
93
            pipe_command(str): pipe command
94

D
dongdaxiang 已提交
95 96 97
        """
        self.proto_desc.pipe_command = pipe_command

T
Thunderbrook 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def set_so_parser_name(self, so_parser_name):
        """
        Set so parser name of current dataset

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_so_parser_name("./abc.so")

        Args:
            pipe_command(str): pipe command

        """
        self.proto_desc.so_parser_name = so_parser_name

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

132 133 134 135 136 137 138 139
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
140
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
177 178 179 180
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

181 182 183 184 185 186
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
187 188

        Args:
189
            batch_size(int): batch size
D
dongdaxiang 已提交
190 191 192 193

        """
        self.proto_desc.batch_size = batch_size

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

210
    def set_thread(self, thread_num):
211 212 213
        """
        Set thread num, it is the num of readers.

214 215 216 217 218 219
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
220 221

        Args:
222
            thread_num(int): thread num
223
        """
224
        self.dataset.set_thread_num(thread_num)
225
        self.thread_num = thread_num
226 227

    def set_filelist(self, filelist):
228 229 230
        """
        Set file list in current worker.

231 232 233 234 235 236
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
237 238

        Args:
239
            filelist(list): file list
240
        """
241
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
242
        self.filelist = filelist
243

244 245 246
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
247
    def set_use_var(self, var_list):
248 249 250
        """
        Set Variables which you will use.

251 252 253 254 255 256
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
257 258

        Args:
259
            var_list(list): variable list
260
        """
261
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
262
        for var in var_list:
263
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
264 265 266 267
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
268
                slot_var.shape.extend(var.shape)
269
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
270
                slot_var.type = "float"
271
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
272
                slot_var.type = "uint64"
B
Baibaifan 已提交
273 274
            elif var.dtype == core.VarDesc.VarType.INT32:
                slot_var.type = "uint32"
D
dongdaxiang 已提交
275 276
            else:
                raise ValueError(
B
Baibaifan 已提交
277
                    "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64"
D
dongdaxiang 已提交
278 279
                )

280
    def set_hdfs_config(self, fs_name, fs_ugi):
281 282 283
        """
        Set hdfs config: fs name ad ugi

284 285 286 287 288 289
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
290 291

        Args:
292 293
            fs_name(str): fs name
            fs_ugi(str): fs ugi
294
        """
295 296
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

313
    def _prepare_to_run(self):
314 315 316 317
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
318 319 320
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
321
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
322 323
        self.dataset.create_readers()

324 325 326 327 328 329 330 331
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu
332 333 334 335 336
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
            self.use_ps_gpu = 0
        elif self.use_ps_gpu:
            self.psgpu = core.PSGPU()
337

J
jiaqi 已提交
338 339
    def _finish_to_run(self):
        self.dataset.destroy_readers()
340

D
dongdaxiang 已提交
341 342 343 344
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

345 346 347 348 349 350
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
351 352 353 354 355 356

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

357 358 359 360 361 362
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
363 364

class InMemoryDataset(DatasetBase):
365 366
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
367 368
    and shuffle data before training.
    This class should be created by DatasetFactory
369 370

    Example:
371
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
372
    """
D
dongdaxiang 已提交
373

374
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
375
    def __init__(self):
376
        """ Init. """
377 378
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
379
        self.fleet_send_batch_size = None
380
        self.is_user_set_queue_num = False
J
jiaqi 已提交
381
        self.queue_num = None
382 383
        self.parse_ins_id = False
        self.parse_content = False
384 385 386
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
387
        self.merge_by_lineid = False
388
        self.fleet_send_sleep_seconds = None
389
        self.trainer_num = -1
J
jiaqi 已提交
390

391 392 393
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
394 395 396 397 398 399
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

400 401 402
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
403 404 405 406 407
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
408
        if self.thread_num <= 0:
409
            self.thread_num = 1
J
jiaqi 已提交
410 411 412 413
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
414 415
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
416 417 418
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
419 420 421 422
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

423 424 425 426
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
427 428
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
429 430 431 432
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
433 434
        self.dataset.dynamic_adjust_readers_num(thread_num)

435 436 437 438
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
439 440
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
441 442 443 444
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
445 446
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

447 448 449
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
450 451 452 453 454
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
455
            queue_num(int): dataset output queue num
J
jiaqi 已提交
456 457 458 459 460 461 462 463 464

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
465
        self.is_user_set_queue_num = True
J
jiaqi 已提交
466 467
        self.queue_num = queue_num

468 469 470
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

488 489 490
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

542 543 544
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

634 635 636 637
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
638
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
639
        """
640
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
654

655 656 657 658
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

676 677 678
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
679
    def set_merge_by_lineid(self, merge_size=2):
680 681 682 683 684
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
685
            merge_size(int): ins size to merge. default is 2.
686 687 688 689 690 691 692 693 694

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
695
        self.dataset.set_merge_by_lineid(merge_size)
696
        self.merge_by_lineid = True
697
        self.parse_ins_id = True
698

699 700 701 702
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
703 704 705 706 707
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

708 709 710 711
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
712 713 714 715 716
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

717 718 719
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
720
    def load_into_memory(self, is_shuffle=False):
721 722 723
        """
        Load data into memory

724 725 726
         Args:
            is_shuffle(bool): whether to use local shuffle, default is False

727 728 729 730 731 732 733 734
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
735
        """
736
        self._prepare_to_run()
737 738 739 740 741
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
D
dongdaxiang 已提交
742

743 744 745
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
746
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
747 748 749
        """
        Load data into memory in async mode

750 751 752
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
753 754 755 756 757 758 759 760 761 762 763
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
764 765 766 767
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
768 769
        self.dataset.preload_into_memory()

770 771 772
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
788
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
789

790 791 792
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
793
    def local_shuffle(self):
794 795 796
        """
        Local shuffle

797 798 799 800 801 802 803 804 805
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
806
        """
807
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
808

809 810 811
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
812
    def global_shuffle(self, fleet=None, thread_num=12):
813 814
        """
        Global shuffle.
815 816 817
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
818

819
        Examples:
820 821 822 823 824 825 826 827 828
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
829 830

        Args:
831
            fleet(Fleet): fleet singleton. Default None.
832
            thread_num(int): shuffle thread num. Default is 12.
833

834
        """
835
        if fleet is not None:
X
xujiaqi01 已提交
836
            fleet._role_maker.barrier_worker()
837 838
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
839
        if self.fleet_send_batch_size is None:
840 841 842
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
843
        self.dataset.register_client2client_msg_handler()
844
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
845
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
846
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
847
        if fleet is not None:
X
xujiaqi01 已提交
848
            fleet._role_maker.barrier_worker()
849
        self.dataset.global_shuffle(thread_num)
850
        if fleet is not None:
X
xujiaqi01 已提交
851
            fleet._role_maker.barrier_worker()
852 853 854
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
855
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
856

857 858 859
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
860 861
    def release_memory(self):
        """
862 863
        :api_attr: Static Graph
        
864 865
        Release InMemoryDataset memory data, when data will not be used again.

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

881 882
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

908 909 910
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
911 912 913 914 915 916 917 918 919 920 921 922 923 924
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

925 926 927 928 929 930 931 932 933 934
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
935 936 937 938 939 940 941

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
942 943
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
944 945 946
            return global_data_size[0]
        return local_data_size[0]

947 948 949
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

965 966 967 968 969 970 971 972 973 974 975
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
976 977 978 979 980 981 982

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
983 984
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
985 986 987
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
988

D
dongdaxiang 已提交
989
class QueueDataset(DatasetBase):
990 991 992
    """
    QueueDataset, it will process data streamly.

993 994 995 996 997 998
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

999
    """
D
dongdaxiang 已提交
1000

D
dongdaxiang 已提交
1001
    def __init__(self):
1002
        """
D
dongdaxiang 已提交
1003 1004
        Initialize QueueDataset
        This class should be created by DatasetFactory
1005
        """
1006
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
1007
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
1008

1009 1010 1011
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
1026
    def local_shuffle(self):
1027
        """
1028
        Local shuffle data.
D
dongdaxiang 已提交
1029

D
dongdaxiang 已提交
1030 1031
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1032 1033 1034 1035 1036 1037 1038 1039

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1040 1041 1042
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1043
        """
D
dongdaxiang 已提交
1044 1045 1046
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1047

1048
    def global_shuffle(self, fleet=None):
1049
        """
1050 1051
        Global shuffle data.

D
dongdaxiang 已提交
1052 1053
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1054

1055 1056 1057
        Args:
            fleet(Fleet): fleet singleton. Default None.

1058 1059 1060 1061 1062 1063 1064 1065
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1066 1067 1068
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1069
        """
D
dongdaxiang 已提交
1070 1071 1072
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1073 1074 1075 1076 1077


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1078 1079 1080 1081 1082 1083

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1084 1085 1086 1087
    """

    def __init__(self):
        """
1088 1089
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1090 1091 1092 1093 1094 1095
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1096 1097
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1098 1099 1100 1101 1102 1103 1104 1105
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1106
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1107 1108 1109 1110
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1121
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1122 1123 1124 1125
    """

    def __init__(self):
        """
1126 1127
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1128 1129 1130
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1131
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1132

H
hutuxian 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1142 1143
    def begin_pass(self):
        """
1144
        Begin Pass
H
hutuxian 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1154 1155
        self.boxps.begin_pass()

1156
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1157
        """
1158
        End Pass
H
hutuxian 已提交
1159 1160 1161 1162 1163 1164
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1165
              dataset.end_pass(True)
H
hutuxian 已提交
1166
        """
1167
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1168 1169 1170

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1171
        Wait async preload done
1172
        Wait Until Feed Pass Done
H
hutuxian 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1183 1184 1185 1186
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1197 1198 1199 1200 1201
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1212 1213
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1214 1215 1216 1217 1218

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1219 1220 1221

    def _dynamic_adjust_after_train(self):
        pass
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)