dataset.py 37.6 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
D
dongdaxiang 已提交
77 78 79 80 81 82

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

83 84 85 86 87 88
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
89 90

        Args:
91
            pipe_command(str): pipe command
92

D
dongdaxiang 已提交
93 94 95
        """
        self.proto_desc.pipe_command = pipe_command

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

113 114 115 116 117 118 119 120
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
121
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
158 159 160 161
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

162 163 164 165 166 167
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
168 169

        Args:
170
            batch_size(int): batch size
D
dongdaxiang 已提交
171 172 173 174

        """
        self.proto_desc.batch_size = batch_size

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

191
    def set_thread(self, thread_num):
192 193 194
        """
        Set thread num, it is the num of readers.

195 196 197 198 199 200
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
201 202

        Args:
203
            thread_num(int): thread num
204
        """
205
        self.dataset.set_thread_num(thread_num)
206
        self.thread_num = thread_num
207 208

    def set_filelist(self, filelist):
209 210 211
        """
        Set file list in current worker.

212 213 214 215 216 217
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
218 219

        Args:
220
            filelist(list): file list
221
        """
222
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
223
        self.filelist = filelist
224

225 226 227
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
228
    def set_use_var(self, var_list):
229 230 231
        """
        Set Variables which you will use.

232 233 234 235 236 237
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
238 239

        Args:
240
            var_list(list): variable list
241
        """
242
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
243
        for var in var_list:
244
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
245 246 247 248
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
249
                slot_var.shape.extend(var.shape)
250
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
251
                slot_var.type = "float"
252
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
253 254 255 256 257 258
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

259
    def set_hdfs_config(self, fs_name, fs_ugi):
260 261 262
        """
        Set hdfs config: fs name ad ugi

263 264 265 266 267 268
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
269 270

        Args:
271 272
            fs_name(str): fs name
            fs_ugi(str): fs ugi
273
        """
274 275
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

292
    def _prepare_to_run(self):
293 294 295 296
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
297 298 299
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
300
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
301 302 303 304
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
305

D
dongdaxiang 已提交
306 307 308 309
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

310 311 312 313 314 315
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
316 317 318 319 320 321

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

322 323 324 325 326 327
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
328 329

class InMemoryDataset(DatasetBase):
330 331
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
332 333
    and shuffle data before training.
    This class should be created by DatasetFactory
334 335

    Example:
336
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
337
    """
D
dongdaxiang 已提交
338

339
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
340
    def __init__(self):
341
        """ Init. """
342 343
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
344
        self.fleet_send_batch_size = None
345
        self.is_user_set_queue_num = False
J
jiaqi 已提交
346
        self.queue_num = None
347 348
        self.parse_ins_id = False
        self.parse_content = False
349 350 351
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
352
        self.merge_by_lineid = False
353
        self.fleet_send_sleep_seconds = None
354
        self.trainer_num = -1
J
jiaqi 已提交
355

356 357 358
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
359 360 361 362 363 364
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

365 366 367
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
368 369 370 371 372
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
373
        if self.thread_num <= 0:
374
            self.thread_num = 1
J
jiaqi 已提交
375 376 377 378
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
379 380
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
381 382 383
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
384 385 386 387
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

388 389 390 391
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
392 393
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
394
            self.dataset.dynamic_adjust_channel_num(thread_num, False)
395 396
        self.dataset.dynamic_adjust_readers_num(thread_num)

397 398 399 400
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
401 402
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
403
            self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
404 405
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

406 407 408
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
409 410 411 412 413
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
414
            queue_num(int): dataset output queue num
J
jiaqi 已提交
415 416 417 418 419 420 421 422 423

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
424
        self.is_user_set_queue_num = True
J
jiaqi 已提交
425 426
        self.queue_num = queue_num

427 428 429
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

447 448 449
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

501 502 503
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

593 594 595 596
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
597
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
598
        """
599
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
613

614 615 616 617
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

635 636 637
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
638
    def set_merge_by_lineid(self, merge_size=2):
639 640 641 642 643
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
644
            merge_size(int): ins size to merge. default is 2.
645 646 647 648 649 650 651 652 653

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
654
        self.dataset.set_merge_by_lineid(merge_size)
655
        self.merge_by_lineid = True
656
        self.parse_ins_id = True
657

658 659 660 661
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
662 663 664 665 666
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

667 668 669 670
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
671 672 673 674 675
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

676 677 678
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
679
    def load_into_memory(self):
680 681 682
        """
        Load data into memory

683 684 685 686 687 688 689 690
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
691
        """
692
        self._prepare_to_run()
693
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
694

695 696 697
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
698
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
699 700 701
        """
        Load data into memory in async mode

702 703 704
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
705 706 707 708 709 710 711 712 713 714 715
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
716 717 718 719
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
720 721
        self.dataset.preload_into_memory()

722 723 724
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
740
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
741

742 743 744
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
745
    def local_shuffle(self):
746 747 748
        """
        Local shuffle

749 750 751 752 753 754 755 756 757
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
758
        """
759
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
760

761 762 763
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
764
    def global_shuffle(self, fleet=None, thread_num=12):
765 766
        """
        Global shuffle.
767 768 769
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
770

771
        Examples:
772 773 774 775 776 777 778 779 780
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
781 782

        Args:
783
            fleet(Fleet): fleet singleton. Default None.
784
            thread_num(int): shuffle thread num. Default is 12.
785

786
        """
787
        if fleet is not None:
X
xujiaqi01 已提交
788
            fleet._role_maker.barrier_worker()
789 790
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
791
        if self.fleet_send_batch_size is None:
792 793 794
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
795
        self.dataset.register_client2client_msg_handler()
796
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
797
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
798
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
799
        if fleet is not None:
X
xujiaqi01 已提交
800
            fleet._role_maker.barrier_worker()
801
        self.dataset.global_shuffle(thread_num)
802
        if fleet is not None:
X
xujiaqi01 已提交
803
            fleet._role_maker.barrier_worker()
804 805 806
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
807
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
808

809 810 811
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
812 813
    def release_memory(self):
        """
814 815
        :api_attr: Static Graph
        
816 817
        Release InMemoryDataset memory data, when data will not be used again.

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

833 834
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

860 861 862
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
863 864 865 866 867 868 869 870 871 872 873 874 875 876
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

877 878 879 880 881 882 883 884 885 886
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
887 888 889 890 891 892 893

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
894 895
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
896 897 898
            return global_data_size[0]
        return local_data_size[0]

899 900 901
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

917 918 919 920 921 922 923 924 925 926 927
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
928 929 930 931 932 933 934

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
935 936
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
937 938 939
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
940

D
dongdaxiang 已提交
941
class QueueDataset(DatasetBase):
942 943 944
    """
    QueueDataset, it will process data streamly.

945 946 947 948 949 950
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

951
    """
D
dongdaxiang 已提交
952

D
dongdaxiang 已提交
953
    def __init__(self):
954
        """
D
dongdaxiang 已提交
955 956
        Initialize QueueDataset
        This class should be created by DatasetFactory
957
        """
958
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
959
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
960

961 962 963
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
964 965 966 967 968 969 970 971 972 973 974 975 976 977
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
978
    def local_shuffle(self):
979
        """
980
        Local shuffle data.
D
dongdaxiang 已提交
981

D
dongdaxiang 已提交
982 983
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
984 985 986 987 988 989 990 991

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

992 993 994
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

995
        """
D
dongdaxiang 已提交
996 997 998
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
999

1000
    def global_shuffle(self, fleet=None):
1001
        """
1002 1003
        Global shuffle data.

D
dongdaxiang 已提交
1004 1005
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1006

1007 1008 1009
        Args:
            fleet(Fleet): fleet singleton. Default None.

1010 1011 1012 1013 1014 1015 1016 1017
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1018 1019 1020
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1021
        """
D
dongdaxiang 已提交
1022 1023 1024
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1025 1026 1027 1028 1029


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1030 1031 1032 1033 1034 1035

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1036 1037 1038 1039
    """

    def __init__(self):
        """
1040 1041
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1042 1043 1044 1045 1046 1047
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1048 1049
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1050 1051 1052 1053 1054 1055 1056 1057
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1058
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1059 1060 1061 1062
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1073
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1074 1075 1076 1077
    """

    def __init__(self):
        """
1078 1079
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1080 1081 1082
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1083
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1084

H
hutuxian 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1094 1095
    def begin_pass(self):
        """
1096
        Begin Pass
H
hutuxian 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1106 1107
        self.boxps.begin_pass()

1108
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1109
        """
1110
        End Pass
H
hutuxian 已提交
1111 1112 1113 1114 1115 1116
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1117
              dataset.end_pass(True)
H
hutuxian 已提交
1118
        """
1119
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1120 1121 1122

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1123
        Wait async preload done
1124
        Wait Until Feed Pass Done
H
hutuxian 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1135 1136 1137 1138
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1149 1150 1151 1152 1153
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1164 1165
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1166 1167 1168 1169 1170

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1171 1172 1173

    def _dynamic_adjust_after_train(self):
        pass
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)