dataset.py 8.0 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
__all__ = ['DatasetFactory']


class DatasetFactory(object):
22 23 24 25 26 27 28 29
    """
    DatasetFactory is a factory which create dataset by its name,
    you can create "QueueDataset" or "InMemoryDataset",
    the default is "QueueDataset".

    Example:
        dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
    """
D
dongdaxiang 已提交
30

D
dongdaxiang 已提交
31
    def __init__(self):
32 33 34
        """
        Init
        """
D
dongdaxiang 已提交
35 36
        pass

37
    def create_dataset(self, datafeed_class="QueueDataset"):
38 39 40 41
        """
        Create "QueueDataset" or "InMemoryDataset",
        the default is "QueueDataset".
        """
D
dongdaxiang 已提交
42 43
        try:
            dataset = globals()[datafeed_class]()
44
            return dataset
D
dongdaxiang 已提交
45 46 47 48 49 50
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
51 52 53
    """
    Base dataset class
    """
D
dongdaxiang 已提交
54

D
dongdaxiang 已提交
55
    def __init__(self):
56 57 58
        """
        Init
        """
D
dongdaxiang 已提交
59 60 61 62
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
63
        self.dataset = core.Dataset("MultiSlotDataset")
64
        self.thread_num = 0
D
dongdaxiang 已提交
65 66 67 68 69 70

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

71 72 73 74 75 76
        Example:
            >>> dataset.set_pipe_command("python my_script.py")

        Args:
            pipe_command: pipe command

D
dongdaxiang 已提交
77 78 79 80 81 82 83 84
        """
        self.proto_desc.pipe_command = pipe_command

    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

        Example:
85
            >>> dataset.set_batch_size(128)
D
dongdaxiang 已提交
86 87 88 89 90 91 92

        Args:
            batch_size: batch size

        """
        self.proto_desc.batch_size = batch_size

93
    def set_thread(self, thread_num):
94 95 96 97 98 99 100 101 102
        """
        Set thread num, it is the num of readers.

        Example:
            >>> dataset.set_thread(12)

        Args:
            thread_num: thread num
        """
103
        self.dataset.set_thread_num(thread_num)
104
        self.thread_num = thread_num
105 106

    def set_filelist(self, filelist):
107 108 109 110 111 112 113 114 115
        """
        Set file list in current worker.

        Example:
            >>> dataset.set_filelist(['a.txt', 'b.txt'])

        Args:
            filelist: file list
        """
116 117
        self.dataset.set_filelist(filelist)

D
dongdaxiang 已提交
118
    def set_use_var(self, var_list):
119 120 121 122 123 124 125 126 127
        """
        Set Variables which you will use.

        Example:
            >>> dataset.set_use_var([data, label])

        Args:
            var_list: variable list
        """
128
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
129
        for var in var_list:
130
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
131 132 133 134
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
135
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
136
                slot_var.type = "float"
137
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
138 139 140 141 142 143
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

144
    def set_hdfs_config(self, fs_name, fs_ugi):
145 146 147 148 149 150 151 152 153 154
        """
        Set hdfs config: fs name ad ugi

        Example:
            >>> dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")

        Args:
            fs_name: fs name
            fs_ugi: fs ugi
        """
155 156
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

157
    def _prepare_to_run(self):
158 159 160 161
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
162 163
        self.dataset.set_data_feed_desc(self.desc())

D
dongdaxiang 已提交
164 165 166 167 168
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

        Example:
169
            >>> print(dataset.desc())
D
dongdaxiang 已提交
170 171 172 173 174 175 176 177

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)


class InMemoryDataset(DatasetBase):
178 179 180 181 182 183 184
    """
    InMemoryDataset, it will load data into memory
    and shuffle data before training

    Example:
        dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
    """
D
dongdaxiang 已提交
185

D
dongdaxiang 已提交
186
    def __init__(self):
187 188 189
        """
        Init
        """
190 191 192 193
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"

    def load_into_memory(self):
194 195 196 197
        """
        Load data into memory

        Example:
D
dongdaxiang 已提交
198 199 200 201
            >>> import paddle.fluid as fluid
            >>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
            >>> filelist = ["a.txt", "b.txt"]
            >>> dataset.set_filelist(filelist)
202 203
            >>> dataset.load_into_memory()
        """
204
        self._prepare_to_run()
205
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
206 207

    def local_shuffle(self):
208 209 210 211
        """
        Local shuffle

        Example:
D
dongdaxiang 已提交
212 213 214 215
            >>> import paddle.fluid as fluid
            >>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
            >>> filelist = ["a.txt", "b.txt"]
            >>> dataset.set_filelist(filelist)
216 217
            >>> dataset.local_shuffle()
        """
218
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
219

220
    def global_shuffle(self, fleet=None):
221 222
        """
        Global shuffle.
223 224 225
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
226

227
        Examples:
D
dongdaxiang 已提交
228 229 230 231 232
            >>> import paddle.fluid as fluid
            >>> import paddle.fluid.incubate.fleet.parameter_server as fleet
            >>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
            >>> filelist = ["a.txt", "b.txt"]
            >>> dataset.set_filelist(filelist)
233 234 235 236 237
            >>> dataset.global_shuffle(fleet)

        Args:
            fleet: fleet singleton. Default None.
        """
238 239
        trainer_num = 1
        if fleet is not None:
X
xjqbest 已提交
240
            fleet.fleet_instance.role_maker_._barrier_worker()
241
            trainer_num = fleet.worker_num()
242
        self.dataset.register_client2client_msg_handler()
243
        self.dataset.set_trainer_num(trainer_num)
244
        if fleet is not None:
X
xjqbest 已提交
245
            fleet.fleet_instance.role_maker_._barrier_worker()
X
xujiaqi01 已提交
246
        self.dataset.global_shuffle()
247
        if fleet is not None:
X
xjqbest 已提交
248
            fleet.fleet_instance.role_maker_._barrier_worker()
D
dongdaxiang 已提交
249 250 251


class QueueDataset(DatasetBase):
252 253 254 255
    """
    QueueDataset, it will process data streamly.

    Example:
D
dongdaxiang 已提交
256 257
        import paddle.fluid as fluid
        dataset = fluid.DatasetFactory.create_dataset("QueueDataset")
258
    """
D
dongdaxiang 已提交
259

D
dongdaxiang 已提交
260
    def __init__(self):
261 262 263
        """
        Init
        """
264
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
265
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
266 267

    def local_shuffle(self):
268 269
        """
        Local shuffle
D
dongdaxiang 已提交
270 271

        QueueDataset does not support local shuffle
272
        """
D
dongdaxiang 已提交
273 274 275
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
276

277
    def global_shuffle(self, fleet=None):
278 279 280
        """
        Global shuffle
        """
D
dongdaxiang 已提交
281 282 283
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")