dataset.py 38.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
77
        self.use_ps_gpu = False
78
        self.psgpu = None
D
dongdaxiang 已提交
79 80 81 82 83 84

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

85 86 87 88 89 90
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
91 92

        Args:
93
            pipe_command(str): pipe command
94

D
dongdaxiang 已提交
95 96 97
        """
        self.proto_desc.pipe_command = pipe_command

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

115 116 117 118 119 120 121 122
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
123
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
160 161 162 163
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

164 165 166 167 168 169
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
170 171

        Args:
172
            batch_size(int): batch size
D
dongdaxiang 已提交
173 174 175 176

        """
        self.proto_desc.batch_size = batch_size

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

193
    def set_thread(self, thread_num):
194 195 196
        """
        Set thread num, it is the num of readers.

197 198 199 200 201 202
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
203 204

        Args:
205
            thread_num(int): thread num
206
        """
207
        self.dataset.set_thread_num(thread_num)
208
        self.thread_num = thread_num
209 210

    def set_filelist(self, filelist):
211 212 213
        """
        Set file list in current worker.

214 215 216 217 218 219
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
220 221

        Args:
222
            filelist(list): file list
223
        """
224
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
225
        self.filelist = filelist
226

227 228 229
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
230
    def set_use_var(self, var_list):
231 232 233
        """
        Set Variables which you will use.

234 235 236 237 238 239
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
240 241

        Args:
242
            var_list(list): variable list
243
        """
244
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
245
        for var in var_list:
246
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
247 248 249 250
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
251
                slot_var.shape.extend(var.shape)
252
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
253
                slot_var.type = "float"
254
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
255
                slot_var.type = "uint64"
B
Baibaifan 已提交
256 257
            elif var.dtype == core.VarDesc.VarType.INT32:
                slot_var.type = "uint32"
D
dongdaxiang 已提交
258 259
            else:
                raise ValueError(
B
Baibaifan 已提交
260
                    "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64"
D
dongdaxiang 已提交
261 262
                )

263
    def set_hdfs_config(self, fs_name, fs_ugi):
264 265 266
        """
        Set hdfs config: fs name ad ugi

267 268 269 270 271 272
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
273 274

        Args:
275 276
            fs_name(str): fs name
            fs_ugi(str): fs ugi
277
        """
278 279
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

296
    def _prepare_to_run(self):
297 298 299 300
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
301 302 303
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
304
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
305 306
        self.dataset.create_readers()

307 308 309 310 311 312 313 314
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu
315 316 317 318 319
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
            self.use_ps_gpu = 0
        elif self.use_ps_gpu:
            self.psgpu = core.PSGPU()
320

J
jiaqi 已提交
321 322
    def _finish_to_run(self):
        self.dataset.destroy_readers()
323

D
dongdaxiang 已提交
324 325 326 327
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

328 329 330 331 332 333
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
334 335 336 337 338 339

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

340 341 342 343 344 345
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
346 347

class InMemoryDataset(DatasetBase):
348 349
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
350 351
    and shuffle data before training.
    This class should be created by DatasetFactory
352 353

    Example:
354
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
355
    """
D
dongdaxiang 已提交
356

357
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
358
    def __init__(self):
359
        """ Init. """
360 361
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
362
        self.fleet_send_batch_size = None
363
        self.is_user_set_queue_num = False
J
jiaqi 已提交
364
        self.queue_num = None
365 366
        self.parse_ins_id = False
        self.parse_content = False
367 368 369
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
370
        self.merge_by_lineid = False
371
        self.fleet_send_sleep_seconds = None
372
        self.trainer_num = -1
J
jiaqi 已提交
373

374 375 376
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
377 378 379 380 381 382
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

383 384 385
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
386 387 388 389 390
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
391
        if self.thread_num <= 0:
392
            self.thread_num = 1
J
jiaqi 已提交
393 394 395 396
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
397 398
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
399 400 401
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
402 403 404 405
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

406 407 408 409
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
410 411
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
412 413 414 415
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
416 417
        self.dataset.dynamic_adjust_readers_num(thread_num)

418 419 420 421
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
422 423
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
424 425 426 427
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
428 429
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

430 431 432
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
433 434 435 436 437
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
438
            queue_num(int): dataset output queue num
J
jiaqi 已提交
439 440 441 442 443 444 445 446 447

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
448
        self.is_user_set_queue_num = True
J
jiaqi 已提交
449 450
        self.queue_num = queue_num

451 452 453
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

471 472 473
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

525 526 527
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

617 618 619 620
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
621
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
622
        """
623
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
624 625 626 627 628 629 630 631 632 633 634 635 636

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
637

638 639 640 641
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

659 660 661
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
662
    def set_merge_by_lineid(self, merge_size=2):
663 664 665 666 667
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
668
            merge_size(int): ins size to merge. default is 2.
669 670 671 672 673 674 675 676 677

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
678
        self.dataset.set_merge_by_lineid(merge_size)
679
        self.merge_by_lineid = True
680
        self.parse_ins_id = True
681

682 683 684 685
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
686 687 688 689 690
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

691 692 693 694
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
695 696 697 698 699
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

700 701 702
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
703
    def load_into_memory(self, is_shuffle=False):
704 705 706
        """
        Load data into memory

707 708 709
         Args:
            is_shuffle(bool): whether to use local shuffle, default is False

710 711 712 713 714 715 716 717
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
718
        """
719
        self._prepare_to_run()
720 721 722 723 724
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
D
dongdaxiang 已提交
725

726 727 728
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
729
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
730 731 732
        """
        Load data into memory in async mode

733 734 735
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
736 737 738 739 740 741 742 743 744 745 746
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
747 748 749 750
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
751 752
        self.dataset.preload_into_memory()

753 754 755
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
771
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
772

773 774 775
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
776
    def local_shuffle(self):
777 778 779
        """
        Local shuffle

780 781 782 783 784 785 786 787 788
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
789
        """
790
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
791

792 793 794
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
795
    def global_shuffle(self, fleet=None, thread_num=12):
796 797
        """
        Global shuffle.
798 799 800
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
801

802
        Examples:
803 804 805 806 807 808 809 810 811
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
812 813

        Args:
814
            fleet(Fleet): fleet singleton. Default None.
815
            thread_num(int): shuffle thread num. Default is 12.
816

817
        """
818
        if fleet is not None:
X
xujiaqi01 已提交
819
            fleet._role_maker.barrier_worker()
820 821
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
822
        if self.fleet_send_batch_size is None:
823 824 825
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
826
        self.dataset.register_client2client_msg_handler()
827
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
828
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
829
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
830
        if fleet is not None:
X
xujiaqi01 已提交
831
            fleet._role_maker.barrier_worker()
832
        self.dataset.global_shuffle(thread_num)
833
        if fleet is not None:
X
xujiaqi01 已提交
834
            fleet._role_maker.barrier_worker()
835 836 837
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
838
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
839

840 841 842
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
843 844
    def release_memory(self):
        """
845 846
        :api_attr: Static Graph
        
847 848
        Release InMemoryDataset memory data, when data will not be used again.

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

864 865
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
866

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

891 892 893
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
894 895 896 897 898 899 900 901 902 903 904 905 906 907
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

908 909 910 911 912 913 914 915 916 917
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
918 919 920 921 922 923 924

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
925 926
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
927 928 929
            return global_data_size[0]
        return local_data_size[0]

930 931 932
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

948 949 950 951 952 953 954 955 956 957 958
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
959 960 961 962 963 964 965

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
966 967
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
968 969 970
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
971

D
dongdaxiang 已提交
972
class QueueDataset(DatasetBase):
973 974 975
    """
    QueueDataset, it will process data streamly.

976 977 978 979 980 981
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

982
    """
D
dongdaxiang 已提交
983

D
dongdaxiang 已提交
984
    def __init__(self):
985
        """
D
dongdaxiang 已提交
986 987
        Initialize QueueDataset
        This class should be created by DatasetFactory
988
        """
989
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
990
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
991

992 993 994
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
1009
    def local_shuffle(self):
1010
        """
1011
        Local shuffle data.
D
dongdaxiang 已提交
1012

D
dongdaxiang 已提交
1013 1014
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1015 1016 1017 1018 1019 1020 1021 1022

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1023 1024 1025
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1026
        """
D
dongdaxiang 已提交
1027 1028 1029
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1030

1031
    def global_shuffle(self, fleet=None):
1032
        """
1033 1034
        Global shuffle data.

D
dongdaxiang 已提交
1035 1036
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1037

1038 1039 1040
        Args:
            fleet(Fleet): fleet singleton. Default None.

1041 1042 1043 1044 1045 1046 1047 1048
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1049 1050 1051
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1052
        """
D
dongdaxiang 已提交
1053 1054 1055
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1056 1057 1058 1059 1060


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1061 1062 1063 1064 1065 1066

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1067 1068 1069 1070
    """

    def __init__(self):
        """
1071 1072
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1073 1074 1075 1076 1077 1078
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1079 1080
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1081 1082 1083 1084 1085 1086 1087 1088
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1089
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1090 1091 1092 1093
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1104
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1105 1106 1107 1108
    """

    def __init__(self):
        """
1109 1110
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1111 1112 1113
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1114
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1115

H
hutuxian 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1125 1126
    def begin_pass(self):
        """
1127
        Begin Pass
H
hutuxian 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1137 1138
        self.boxps.begin_pass()

1139
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1140
        """
1141
        End Pass
H
hutuxian 已提交
1142 1143 1144 1145 1146 1147
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1148
              dataset.end_pass(True)
H
hutuxian 已提交
1149
        """
1150
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1151 1152 1153

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1154
        Wait async preload done
1155
        Wait Until Feed Pass Done
H
hutuxian 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1166 1167 1168 1169
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1180 1181 1182 1183 1184
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1195 1196
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1197 1198 1199 1200 1201

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1202 1203 1204

    def _dynamic_adjust_after_train(self):
        pass
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)