activation.py 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
W
WangXi 已提交
21
    'Tanh',
22 23
    'Hardtanh',
    'PReLU',
24
    'ReLU',
25 26
    'ReLU6',
    'SELU',
C
ceci3 已提交
27
    'LeakyReLU',
28
    'Sigmoid',
29
    'Softmax',
30 31 32 33
    'Softplus',
    'Softshrink',
    'Softsign',
    'Tanhshrink',
34
    'LogSigmoid',
35
    'LogSoftmax',
36
    'HSigmoid',
37 38
]

39 40 41
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
42 43
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
Q
Qi Li 已提交
44
from paddle.framework import get_default_dtype
45
from .. import functional as F
46 47


48 49 50 51
class ELU(layers.Layer):
    """
    ELU Activation.

52
    .. math::
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

68 69
            import paddle
            import numpy as np
70

71
            paddle.disable_static()
72

73 74 75 76 77
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

95
    .. math::
96 97 98 99 100

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

101
    .. math::
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

117 118
            import paddle
            import numpy as np
119

120
            paddle.disable_static()
121

122 123 124 125
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
126

127 128
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
129 130 131 132 133 134 135 136 137 138 139
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


140 141 142 143 144 145 146
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
147 148 149 150 151 152 153
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x > threshold \\\\
            &x, & & if \\ x < -threshold \\\\
            &0, & & if \\ others
            \\end{aligned}
            \\right.
154 155 156 157 158 159 160 161 162 163 164 165 166 167

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

168 169
            import paddle
            import numpy as np
170

171
            paddle.disable_static()
172

173 174 175
            x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
            m = paddle.nn.Hardshrink()
            out = m(x) # [-1., 0., 2.5]
176 177 178 179 180 181 182 183
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
184
        return F.hardshrink(x, self._threshold, self._name)
185 186


W
WangXi 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
class Tanh(layers.Layer):
    """
    Tanh Activation.

    .. math::
        Tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)


226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class Hardtanh(layers.Layer):
    """
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            m = paddle.nn.Hardtanh()
            out = m(x) # # [-1., 0.3, 1.]
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)


271 272
class HSigmoid(layers.Layer):
    """
273 274
	:alias_main: paddle.nn.HSigmoid
	:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
395
        out = F.hsigmoid(
396 397 398 399 400 401 402 403 404 405
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
            1 - a single parameter `alpha` is used for all input channels; 
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`. 
            Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
Q
Qi Li 已提交
427
        - input: Tensor with any shape. Default dtype is float32.
428 429 430 431 432 433 434 435 436
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()
Q
Qi Li 已提交
437
            paddle.set_default_dtype("float64")
438 439 440 441 442 443

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
Q
Qi Li 已提交
444
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float64')
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
Q
Qi Li 已提交
466 467
            shape=[self._num_parameters],
            dtype=get_default_dtype(),
468
            is_bias=False,
Q
Qi Li 已提交
469
            default_initializer=Constant(self._init))
470 471 472 473 474

    def forward(self, x):
        return F.prelu(x, self._weight)


475 476 477 478
class ReLU(layers.Layer):
    """
    ReLU Activation.

479
    .. math::
480

481
        ReLU(x) = max(x, 0)
482 483

    Parameters:
484 485 486 487 488 489
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
490
    
491 492 493
    Examples:
        .. code-block:: python

494 495
            import paddle
            import numpy as np
496

497
            paddle.disable_static()
498

499 500 501
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
502 503
    """

504
    def __init__(self, name=None):
505
        super(ReLU, self).__init__()
506
        self._name = name
507

508 509
    def forward(self, x):
        return F.relu(x, self._name)
510 511


512 513 514 515 516 517
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

518
        ReLU6(x) = min(max(0,x), 6)
519 520 521 522 523 524 525 526 527 528 529 530

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

531 532
            import paddle
            import numpy as np
533

534
            paddle.disable_static()
535

536 537 538
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            m = paddle.nn.ReLU6()
            out = m(x) # [0, 0.3, 6]
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

555 556 557 558 559
        SELU(x)= scale *
                 \\begin{cases}
                   x, \\text{if } x > 0 \\\\
                   alpha * e^{x} - alpha, \\text{if } x <= 0
                 \\end{cases}
560 561

    Parameters:
562 563
        scale (float, optional): The value of scale(must be greater than 1.0) for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for SELU. Default is 1.6732632423543772848170429916717
564 565 566 567 568 569 570 571 572 573
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

574 575
            import paddle
            import numpy as np
576

577
            paddle.disable_static()
578

579
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
580 581
            m = paddle.nn.SELU()
            out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
597 598 599 600
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

601
    .. math::
C
ceci3 已提交
602

603
        LeakyReLU(x)=
604 605 606 607 608 609
            \\left\\{
            \\begin{aligned}
            &x, & & if \\ x >= 0 \\\\
            &negative\_slope * x, & & otherwise \\\\
            \\end{aligned}
            \\right. \\\\
C
ceci3 已提交
610 611

    Parameters:
612 613
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
614 615
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
C
ceci3 已提交
616
    
617 618 619
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
620 621 622 623
    
    Examples:
        .. code-block:: python

624 625
            import paddle
            import numpy as np
C
ceci3 已提交
626

627
            paddle.disable_static()
628

629
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
630
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
631
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
632 633
    """

634
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
635
        super(LeakyReLU, self).__init__()
636
        self._negative_slope = negative_slope
637
        self._name = name
C
ceci3 已提交
638

639
    def forward(self, x):
640
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
641 642


643 644
class Sigmoid(layers.Layer):
    """
645 646 647
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
    
    .. math::
S
swtkiwi 已提交
648

649
        Sigmoid(x) = \frac{1}{1 + e^{-x}}
650
    
651 652
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
653

654 655
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
656 657

    Returns:
658
        A callable object of Sigmoid.
659 660
    
    Examples:
661

662 663 664
        .. code-block:: python

          import numpy as np
665 666 667
          import paddle

          paddle.disable_static()
668
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
669
          m = paddle.nn.Sigmoid()
670
          x = paddle.to_tensor(input_data)
671 672
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
673 674
    """

675
    def __init__(self, name=None):
676
        super(Sigmoid, self).__init__()
677
        self.name = name
678

679 680
    def forward(self, x):
        return F.sigmoid(x, self.name)
681 682


683 684 685 686 687 688
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

689 690
        Softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\
        \\text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
691 692

    Parameters:
693 694
        beta (float, optional): The value of beta for Softplus. Default is 1
        threshold (float, optional): The value of threshold for Softplus. Default is 20
695 696 697 698 699 700 701 702 703 704
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

705 706
            import paddle
            import numpy as np
707

708
            paddle.disable_static()
709

710 711 712
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softplus()
            out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

731 732 733 734 735
        Softshrink(x)= \\begin{cases}
                        x - threshold, \\text{if } x > threshold \\\\
                        x + threshold, \\text{if } x < -threshold \\\\
                        0,  \\text{otherwise}
                      \\end{cases}
736 737

    Parameters:
738
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
739 740 741 742 743 744 745 746 747 748
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

749 750
            import paddle
            import numpy as np
751

752
            paddle.disable_static()
753

754 755 756
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            m = paddle.nn.Softshrink()
            out = m(x) # [-0.4, 0, 0, 0.3]
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

774
        Softsign(x) = \\frac{x}{1 + |x|}
775 776 777 778 779 780 781 782 783 784 785 786

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

787 788
            import paddle
            import numpy as np
789

790
            paddle.disable_static()
791

792 793 794
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Softsign()
            out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

811
        Tanhshrink(x) = x - tanh(x)
812 813 814 815 816 817 818 819 820 821 822 823

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

824 825
            import paddle
            import numpy as np
826

827
            paddle.disable_static()
828

829 830 831
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanhshrink()
            out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
832 833 834 835 836 837 838 839 840 841
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


842 843 844 845
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
    
846
    .. math::
847

848
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
849 850 851 852 853 854 855 856 857 858 859 860 861

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

862
            import paddle
863

864
            paddle.disable_static()
865

866
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
867 868
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
869 870 871 872 873 874 875
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
876
        return F.log_sigmoid(x, self._name)
877 878


879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
class Softmax(layers.Layer):
    """
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)


1010 1011 1012 1013 1014 1015 1016
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
1017
                  = log(\\frac{\exp(X[i, j])}{\\sum_j(exp(X[i, j])})
1018 1019

    Parameters:
1020 1021 1022 1023 1024 1025
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1026
 
1027 1028 1029
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1030 1031 1032 1033

    Examples:
        .. code-block:: python

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                           [3.0, -4.0, 5.0, -6.0],
                           [-7.0, -8.0, 8.0, 9.0]],
                          [[1.0, -2.0, -3.0, 4.0],
                           [-5.0, 6.0, 7.0, -8.0],
                           [6.0, 7.0, 8.0, 9.0]]])
            m = paddle.nn.LogSoftmax()
            x = paddle.to_tensor(x)
            out = m(x)
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1054 1055
    """

1056
    def __init__(self, axis=-1, name=None):
1057 1058
        super(LogSoftmax, self).__init__()
        self._axis = axis
1059
        self._name = name
1060

1061 1062
    def forward(self, x):
        return F.log_softmax(x, self._axis)