analysis_config.cc 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <string>
16 17
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
18
#include "paddle/fluid/inference/utils/table_printer.h"
19
#include "paddle/fluid/platform/cpu_info.h"
20
#include "paddle/fluid/platform/enforce.h"
21
#include "paddle/fluid/platform/gpu_info.h"
22

23
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
24 25 26
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

27
namespace paddle {
W
wanghuancoder 已提交
28 29
struct MkldnnQuantizerConfig;

30
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
31
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
32
extern const std::vector<std::string> kLiteSubgraphPasses;
33

34
PassStrategy *AnalysisConfig::pass_builder() const {
35 36 37 38
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
39 40
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
41 42
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
43 44 45 46 47 48 49 50 51 52 53 54
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

55 56 57
  return pass_builder_.get();
}

58
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
59
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
60 61

  Update();
62
}
63 64
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
65 66
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
67 68

  Update();
69
}
70 71
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
72 73
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
74 75

  Update();
76
}
77 78
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
79
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
80 81
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
82
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
83
  gpu_device_id_ = device_id;
84
#else
Y
Yan Chunwei 已提交
85
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
86 87
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
88 89 90

  Update();
}
91
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
92 93 94
  use_gpu_ = false;

  Update();
95 96
}

97 98 99 100 101 102
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
103 104 105 106
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
107 108
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
109 110 111 112 113
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
114 115 116
  Update();
}

117 118 119 120 121 122 123 124
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
125 126 127 128 129 130 131 132 133 134 135 136
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}

137
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
138 139 140 141 142 143
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
144

145
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
146 147
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
148

149
  CP_MEMBER(use_fc_padding_);
150
  // GPU related.
151
  CP_MEMBER(use_gpu_);
152
  CP_MEMBER(use_cudnn_);
153
  CP_MEMBER(gpu_device_id_);
154
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
155 156

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
157
  // TensorRT related.
158 159 160 161
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
162
  CP_MEMBER(tensorrt_precision_mode_);
163
  CP_MEMBER(trt_disabled_ops_);
164 165
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
166
  CP_MEMBER(trt_use_static_engine_);
167
  CP_MEMBER(trt_use_calib_mode_);
168
  CP_MEMBER(trt_use_oss_);
169 170 171 172
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
D
denglin-github 已提交
173 174 175
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
176
  // MKLDNN related.
177 178
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
179
  CP_MEMBER(mkldnn_cache_capacity_);
180 181 182
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
183 184 185
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
186 187 188
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
189
  CP_MEMBER(disable_trt_plugin_fp16_);
190

石晓伟 已提交
191 192 193 194
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
195 196
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
197
  // XPU related.
198
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
199
  CP_MEMBER(xpu_device_id_);
200
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
201 202 203 204 205
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
206

W
Wilber 已提交
207 208 209 210
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);

211 212 213
  // profile related.
  CP_MEMBER(with_profile_);

214 215 216
  // glog related.
  CP_MEMBER(with_glog_info_);

217 218 219 220 221 222 223 224 225 226
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

227 228
  CP_MEMBER(thread_local_stream_);

229
  if (use_gpu_) {
230 231 232
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
233 234
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
235 236 237
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
238 239 240
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
241 242 243 244 245
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

246
#undef CP_MEMBER
Y
Yan Chunwei 已提交
247

W
Wilber 已提交
248 249 250 251 252 253 254
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
    auto all_passes = kTRTSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
W
Wilber 已提交
255 256 257 258
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
W
Wilber 已提交
259 260 261 262 263 264 265
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
266
  }
D
denglin-github 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
282 283
}

284
void AnalysisConfig::EnableCUDNN() {
285
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
286 287 288 289 290 291 292 293 294
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

295
void AnalysisConfig::EnableMKLDNN() {
296 297 298 299 300 301
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
302 303

  Update();
304 305
}

306 307 308 309 310 311 312 313 314
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

315 316 317 318 319 320 321 322 323 324 325 326 327
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

328 329
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
330 331
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
332 333 334 335
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
336 337 338 339
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
340 341 342 343 344 345 346 347
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

348
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
349
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
350 351
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
352
  return mkldnn_quantizer_config_.get();
353 354
}

355
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
356
    int workspace_size, int max_batch_size, int min_subgraph_size,
357
    AnalysisConfig::Precision precision_mode, bool use_static,
358
    bool use_calib_mode) {
359
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
360 361 362 363 364
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

365 366 367
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
368
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
369
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
370
  trt_use_static_engine_ = use_static;
371
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
372

373
  Update();
Y
Yan Chunwei 已提交
374 375 376 377
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
378 379
}

D
denglin-github 已提交
380 381 382 383 384 385
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

386 387 388 389 390 391 392 393 394 395 396
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

397 398 399 400 401
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

402 403 404 405 406
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

407
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
408

Y
Yan Chunwei 已提交
409
// TODO(Superjomn) refactor this, buggy.
410
void AnalysisConfig::Update() {
411 412 413
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
414
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
415 416 417
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
      ((use_npu() ^ pass_builder_->use_npu()))) {
Y
Yan Chunwei 已提交
418 419 420 421 422 423 424
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
425 426 427 428 429 430
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
431 432 433 434 435 436
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
437 438 439
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
440

441
  } else {
Y
Yan Chunwei 已提交
442 443 444
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
445 446 447 448 449 450 451
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
452 453 454 455 456 457 458
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
459 460 461 462
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
463 464 465
  }

  if (use_tensorrt_) {
466 467
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
468
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
469
          (pass == "conv_bn_fuse_pass")) {
470 471
        continue;
      }
472
      pass_builder()->AppendPass(pass);
473 474
    }
  }
D
denglin-github 已提交
475 476 477 478 479 480 481
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

482
  if (use_gpu() && use_cudnn_) {
483
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
484 485 486 487 488 489 490 491
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

492
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
493
#ifdef PADDLE_WITH_MKLDNN
494 495 496
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
497 498
    } else {
      pass_builder()->EnableMKLDNN();
499 500 501 502
    }
#endif
  }

503 504 505 506 507
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
508 509
    }
#ifdef PADDLE_WITH_MKLDNN
510
    pass_builder()->EnableMkldnnQuantizer();
511 512 513
#endif
  }

514 515 516 517 518 519
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

520
#ifdef PADDLE_WITH_MKLDNN
521 522
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
523
#else
Y
Yan Chunwei 已提交
524
  if (enable_memory_optim_) {
525 526
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
527 528
  }

石晓伟 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

543
  if (use_xpu_) {
544
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
545 546 547 548
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
549 550 551 552 553
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
554 555
  }

W
Wilber 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568
  if (use_npu_) {
#ifdef PADDLE_WITH_ASCEND_CL
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }

569 570 571 572 573
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

574
std::string AnalysisConfig::SerializeInfoCache() {
575
  std::stringstream ss;
Y
Yan Chunwei 已提交
576 577 578 579
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

580
  ss << use_gpu_;
581
  ss << use_fc_padding_;
582 583
  ss << gpu_device_id_;
  ss << xpu_device_id_;
584 585 586 587 588
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
589 590
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
591 592 593
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

594 595 596
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

597 598 599
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
600
  ss << enable_memory_optim_;
601 602

  ss << use_mkldnn_;
603
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
604 605 606
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

607
  ss << use_mkldnn_quantizer_;
608
  ss << use_mkldnn_bfloat16_;
609 610
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
611 612
  ss << model_from_memory_;

613 614
  ss << with_profile_;

615 616
  ss << with_glog_info_;

617 618 619 620
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
621 622
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
623 624

  ss << use_lite_;
625 626
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
627 628 629 630 631
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
632

W
Wilber 已提交
633 634 635
  ss << use_npu_;
  ss << npu_device_id_;

636 637
  ss << thread_local_stream_;

638 639 640
  return ss.str();
}

641
void AnalysisConfig::SetCpuMathLibraryNumThreads(
642 643
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
644 645

  Update();
646 647
}

648
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
649
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
650 651
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
652
  size_t gpu_total, gpu_available;
653
  platform::SetDeviceId(gpu_device_id_);
654 655
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
656 657
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
658 659 660 661
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
662 663 664 665
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
666 667
}

668 669
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
670 671 672
  Update();
}

673
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
674 675 676
  return enable_memory_optim_;
}

677 678 679 680
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
681 682
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
683
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
684 685

  Update();
T
Tao Luo 已提交
686 687
}

688
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
689 690 691 692 693
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
694
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
695 696 697 698 699
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
700 701 702 703
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
704 705 706 707 708 709

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

710 711 712 713 714
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
715
void AnalysisConfig::EnableLiteEngine(
716
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
717 718 719 720 721 722
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
723
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
724 725 726
  Update();
}

727 728 729 730 731 732 733
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

734 735
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
755
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  auto Precision2String =
      [](paddle::AnalysisConfig::Precision prec) -> std::string {
    if (prec == Precision::kFloat32)
      return "fp32";
    else if (prec == Precision::kHalf)
      return "fp16";
    else if (prec == Precision::kInt8)
      return "int8";
    else
      return "None";
  };
  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
798 799 800
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
830 831
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
832 833 834 835

  return os.PrintTable();
}

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
872
}  // namespace paddle