analysis_config.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
17
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
18
#include "paddle/fluid/inference/api/paddle_inference_api.h"
19
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/platform/enforce.h"
21
#include "paddle/fluid/platform/gpu_info.h"
22 23 24 25

namespace paddle {

PassStrategy *contrib::AnalysisConfig::pass_builder() const {
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

42 43 44
  return pass_builder_.get();
}

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
contrib::AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
  model_dir_ = model_dir;
}
contrib::AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                                        const std::string &params_file) {
  prog_file_ = prog_file;
  params_file_ = params_file;
}
void contrib::AnalysisConfig::SetModel(const std::string &prog_file_path,
                                       const std::string &params_file_path) {
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
}
void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                           int device_id) {
#ifdef PADDLE_WITH_CUDA
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
  device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with gpu to EnableGpu";
  use_gpu_ = false;
#endif
68
}
69
void contrib::AnalysisConfig::DisableGpu() { use_gpu_ = false; }
70 71

contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
  // Gpu releated.
  CP_MEMBER(use_gpu_);
  CP_MEMBER(device_id_);
  CP_MEMBER(memory_pool_init_size_mb_);
  // TensorRT releated.
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
89
  CP_MEMBER(tensorrt_precision_mode_);
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  // MKLDNN releated.
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);

  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

  if (use_gpu_) {
105 106 107 108 109 110 111
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

112
#undef CP_MEMBER
113 114 115 116 117 118 119 120 121 122 123 124 125
}

void contrib::AnalysisConfig::EnableMKLDNN() {
#ifdef PADDLE_WITH_MKLDNN
  pass_builder()->EnableMKLDNN();
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
}

void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size,
126
                                                   int max_batch_size,
N
nhzlx 已提交
127 128
                                                   int min_subgraph_size,
                                                   std::string precision_mode) {
129 130 131
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
132 133
  tensorrt_precision_mode_ = precision_mode;
  Update();
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
}

void contrib::AnalysisConfig::Update() {
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

  if (use_gpu_) {
    pass_builder_.reset(new GpuPassStrategy);
  } else {
    pass_builder_.reset(new CpuPassStrategy);
  }

  if (use_tensorrt_) {
    if (!use_gpu_) {
      LOG(ERROR)
          << "TensorRT engine is not available when EnableGpu() not actived.";
    } else {
      // Append after the infer_clean pass.
      pass_builder()->InsertPass(1, "tensorrt_subgraph_pass");
    }
  }

  if (use_mkldnn_) {
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
    }
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMKLDNN();
    use_mkldnn_ = true;
#else
    LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
    use_mkldnn_ = false;
#endif
  }

  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

std::string contrib::AnalysisConfig::SerializeInfoCache() {
  std::stringstream ss;
  ss << use_gpu_;
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
N
nhzlx 已提交
183
  ss << tensorrt_precision_mode_;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

  ss << use_mkldnn_;
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

  return ss.str();
}

void contrib::AnalysisConfig::SetCpuMathLibraryNumThreads(
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
}

float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
#ifdef PADDLE_WITH_CUDA
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
  size_t gpu_used, gpu_available;
  platform::GpuMemoryUsage(&gpu_used, &gpu_available);
  double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
211 212
}

T
Tao Luo 已提交
213 214 215 216
void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                             size_t prog_buffer_size,
                                             const char *param_buffer,
                                             size_t param_buffer_size) {
217 218
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
219
  model_from_memory_ = true;
T
Tao Luo 已提交
220 221
}

222
}  // namespace paddle