distribute_transpiler.py 64.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
import math
S
seiriosPlus 已提交
32
import random
33
import numpy as np
34

35
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
36
from .. import core, framework
T
typhoonzero 已提交
37
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
38
                        default_startup_program, Block, \
W
Wu Yi 已提交
39
                        Parameter, grad_var_name
40 41
from .details import *
from functools import reduce
42 43 44

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
45
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
46 47 48
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
49 50


T
typhoonzero 已提交
51 52 53 54 55 56
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
57

T
typhoonzero 已提交
58 59
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
60 61


62 63 64 65
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
66
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
67
    """
68 69 70 71 72 73
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
74
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
75 76 77

    Args:
        var_list (list): List of variables.
78 79
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
80 81
        min_block_size (int): Minimum splitted block size.
    Returns:
82
        blocks (list[(varname, block_id, current_block_size)]): A list
83
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
84 85 86
    """
    blocks = []
    for var in var_list:
87
        split_count = slice_count
T
typhoonzero 已提交
88 89 90 91
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
92
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
102
        # update split_count after aligning
T
typhoonzero 已提交
103
        split_count = int(math.ceil(var_numel / float(block_size)))
104
        for block_id in range(split_count):
T
typhoonzero 已提交
105 106 107 108 109 110 111
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
112 113 114 115 116 117 118
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
119
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
120 121 122 123 124 125 126 127
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192


Y
gen rst  
yi.wu 已提交
128
class DistributeTranspiler(object):
Y
yi.wu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
163

G
gongweibao 已提交
164 165 166 167 168 169 170 171 172 173 174 175
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

176 177 178 179 180 181 182
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  sync_mode=True):
        """
Y
yi.wu 已提交
183 184 185 186 187 188 189 190 191 192 193
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            sync_mode (bool): Do sync training or not, default is True.
194 195 196 197
        """
        if program is None:
            program = default_main_program()
        self.origin_program = program
G
gongweibao 已提交
198 199 200
        self.origin_startup_program = default_startup_program().clone()

        self.startup_program = default_startup_program()
201 202 203 204 205 206 207
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
208
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
209 210
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

G
gongweibao 已提交
211
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
212
        self._init_splited_vars()
213

G
gongweibao 已提交
214
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
215
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
216
        send_vars = []
217 218 219 220 221 222

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
223
        grad_var_mapping_items = list(self.grad_var_mapping.items())
G
gongweibao 已提交
224
        if not self.config.slice_var_up:
S
seiriosPlus 已提交
225 226
            random.seed(self.trainer_num)
            random.shuffle(grad_var_mapping_items)
227 228

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
229
            eplist = ps_dispatcher.dispatch(splited_vars)
230

G
gongweibao 已提交
231
            if not self.config.slice_var_up:
232 233
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
234 235 236 237 238 239 240 241 242
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
243
                index += 1
Y
Yancey1989 已提交
244 245 246 247
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

W
Wu Yi 已提交
248
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
249
                index=index + 1,
250
                type="send",
Y
update  
Yancey1989 已提交
251
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
252 253 254 255 256
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
257 258
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
259 260 261 262 263

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
264
                outputs={},
Y
Yancey1989 已提交
265 266
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
267 268
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
269
                })
Y
Yancey1989 已提交
270

G
gongweibao 已提交
271
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
272
        recv_vars = []
Y
update  
Yancey1989 已提交
273
        for _, var in enumerate(send_vars):
274
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
275
        ps_dispatcher.reset()
Y
Yancey1989 已提交
276 277
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
278
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
279 280
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
281

Y
Yancey1989 已提交
282
        # step4: Concat the parameters splits together after recv.
283
        for varname, splited_var in list(self.param_var_mapping.items()):
Y
Yancey1989 已提交
284 285 286 287 288 289 290 291
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
292 293 294 295 296
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
297

Q
qiaolongfei 已提交
298 299 300 301 302 303 304 305 306
        if self.sync_mode:
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
                outputs={},
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
307

308
        for varname, splited_var in list(self.param_var_mapping.items()):
T
typhoonzero 已提交
309 310
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
311
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
312
            program.global_block().append_op(
T
typhoonzero 已提交
313
                type="concat",
T
typhoonzero 已提交
314
                inputs={"X": splited_var},
T
typhoonzero 已提交
315
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
316
                attrs={"axis": 0})
T
typhoonzero 已提交
317

G
gongweibao 已提交
318 319
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

320
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
321 322
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
323
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
324

T
typhoonzero 已提交
325
    def get_trainer_program(self):
Y
yi.wu 已提交
326 327 328 329 330 331
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
332
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
333
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
334
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
335
        self.origin_program.__str__()
G
gongweibao 已提交
336

337
        return self.origin_program
T
typhoonzero 已提交
338

G
gongweibao 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    def _get_trainer_startup_program(self,
                                     recv_vars,
                                     eplist,
                                     startup_program=None):
        """
        Get transpiled trainer side startup program.

        Args:
            startup_program(Program): Startup program.

        Returns:
            Program: trainer side startup program.
        """
        if startup_program is None:
            startup_program = self.startup_program

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

        for varname, splited_var in self.param_var_mapping.iteritems():
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
                inputs={},
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={},
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        for varname, splited_var in self.param_var_mapping.iteritems():
            #add concat ops to merge splited parameters received from parameter servers.
            if len(splited_var) <= 1:
                continue
            orig_param = startup_program.global_block().vars[varname]
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
408 409
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
410
        Get parameter server side program.
411

Y
yi.wu 已提交
412 413
        Args:
            endpoint (str): current parameter server endpoint.
414

Y
yi.wu 已提交
415 416
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
417
        """
Y
yi.wu 已提交
418 419 420 421 422
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
423 424
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
425
        pserver_program.random_seed = self.origin_program.random_seed
426
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
427 428 429 430 431 432 433 434
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
435 436 437 438 439
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
440 441 442 443 444 445 446 447 448
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
449
            if self.sync_mode and self.trainer_num > 1:
450
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
451 452 453 454 455 456 457 458 459
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
460

Q
qiaolongfei 已提交
461
        # step 3
462
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
463 464 465
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
466
        # step 3.2
T
typhoonzero 已提交
467 468 469 470
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
471 472
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
473
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
474
        # step 3.3
T
typhoonzero 已提交
475
        # Iterate through the ops, and if an op and the optimize ops
476
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
477
        # append it into the sub program.
T
typhoonzero 已提交
478 479 480

        global_ops = []

Y
wip  
yi.wu 已提交
481 482
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
483
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
484
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
485
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
486
            elif op not in lr_ops:
Q
Qiyang Min 已提交
487
                self._append_pserver_non_opt_ops(block, op)
488 489 490 491 492 493

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
494

Y
Yancey1989 已提交
495
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
496 497 498 499 500 501 502 503
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
504
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
505 506 507

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
508
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
509 510

            # clone ops
Y
Yancey1989 已提交
511 512
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
513
                # clone sub_block of op
Y
Yancey1989 已提交
514
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
515 516 517 518

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

519
        # append lr decay ops to the child block if exists
520
        lr_ops = self._get_lr_ops()
521 522
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
523
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
524 525
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
526
            optimize_blocks.append(lr_decay_block)
527
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
528
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
529
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
530 531
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
532

T
typhoonzero 已提交
533
        # append op to the current block
Q
qiaolongfei 已提交
534
        grad_to_block_id = []
Q
qiaolongfei 已提交
535
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
536
        for idx, opt_op in enumerate(opt_op_on_pserver):
537
            per_opt_block = pserver_program.create_block(pre_block_idx)
538
            optimize_blocks.append(per_opt_block)
539
            # append grad merging ops before clip and weight decay
540
            # cases may like:
T
typhoonzero 已提交
541
            # L2Decay op -> clip op -> optimize
542 543 544 545 546 547 548
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
549
                    break  # append optimize op once then append other ops.
T
typhoonzero 已提交
550 551
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
552
                if ufind.is_connected(op, opt_op) and op not in global_ops:
553
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
554
                                           merged_var, lr_ops)
T
typhoonzero 已提交
555

W
Wu Yi 已提交
556 557
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
558
        # append global ops
559
        if global_ops:
Q
qiaolongfei 已提交
560 561
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
562
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
563
            for glb_op in global_ops:
X
Xi Chen 已提交
564
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
565
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
566

567
        # process distributed lookup_table
Q
qiaolongfei 已提交
568
        prefetch_var_name_to_block_id = []
569 570
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
571
            table_opt_block = self._create_table_optimize_block(
572
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
573
            optimize_blocks.append(table_opt_block)
Q
qiaolongfei 已提交
574
            prefetch_var_name_to_block_id = self._create_prefetch_block(
575
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
576 577
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
578 579 580 581

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
582
            assert len(prefetch_var_name_to_block_id) > 0
583
        else:
Q
qiaolongfei 已提交
584
            assert len(prefetch_var_name_to_block_id) == 0
585

586
        attrs = {
587
            "optimize_blocks": optimize_blocks,
588 589 590
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
591
            "grad_to_block_id": grad_to_block_id,
592 593 594 595
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
596
            attrs['checkpint_block_id'] = checkpoint_block_id
597

T
typhoonzero 已提交
598 599 600 601 602
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
603
            attrs=attrs)
604

W
Wu Yi 已提交
605
        pserver_program._sync_with_cpp()
T
typhoonzero 已提交
606 607
        return pserver_program

608 609 610 611
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            startup_program=None):
T
typhoonzero 已提交
612 613 614 615
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
616 617 618 619 620

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
621 622
            startup_program (Program): if pass None, will use
                default_startup_program
623

Y
yi.wu 已提交
624 625
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
626 627
        """
        s_prog = Program()
628 629 630 631
        if not startup_program:
            orig_s_prog = default_startup_program()
        else:
            orig_s_prog = startup_program
X
Xin Pan 已提交
632
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
633 634 635 636 637 638 639 640 641 642 643 644
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
645
        for _, var in list(pserver_vars.items()):
W
Wu Yi 已提交
646
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
647 648 649 650 651 652 653
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
654 655 656 657 658 659 660 661 662 663
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
664 665

            if op_on_pserver:
666 667 668
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
669 670 671
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
G
gongweibao 已提交
672
                    op.set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
673 674 675 676
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
677
                    attrs=op.all_attrs())
T
typhoonzero 已提交
678 679
        return s_prog

680 681
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
682 683 684 685 686 687 688 689 690
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
691
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
743
    def _init_splited_vars(self):
Y
yi.wu 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
767
        if self.config.slice_var_up:
Y
yi.wu 已提交
768 769
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
770 771 772
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
773
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
774 775
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
776 777 778
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
779 780 781 782
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

810
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
811 812
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
813
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
814 815 816 817 818 819 820 821 822
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
823 824 825 826 827 828 829 830 831

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

832
                    lookup_table_op_index = list(all_ops).index(op)
833 834 835
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
836
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
837
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
838 839 840 841 842 843
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
844
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
845 846 847 848
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
849 850

                    # insert split_ids_op
W
Wu Yi 已提交
851
                    program.global_block()._insert_op(
852
                        index=lookup_table_op_index,
853 854 855 856 857 858 859
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
860
                        outputs={"Out": prefetch_input_vars})
861 862

                    # insert prefetch_op
W
Wu Yi 已提交
863
                    program.global_block()._insert_op(
864
                        index=lookup_table_op_index + 1,
865
                        type="prefetch",
Q
qiaolongfei 已提交
866 867
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
868
                        attrs={
869
                            "epmap": pserver_endpoints,
870 871 872
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
873
                        })
874 875

                    # insert concat_op
W
Wu Yi 已提交
876
                    program.global_block()._insert_op(
877 878 879 880 881 882 883
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
884
                            'X': prefetch_output_vars
885
                        },
886 887 888 889 890
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
891
                        })
892 893

                    # delete lookup_table_op
894
                    delete_ops(program.global_block(), [op])
895 896 897
                    # break for loop
                    break

Y
Yancey1989 已提交
898
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
899
        # 2. add split_ids_op and send_op to send gradient to pservers
900 901
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
902
        table_grad_name = grad_var_name(self.table_name)
903 904 905 906
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
907
                program.global_block()._insert_op(
908 909 910 911 912
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
913
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
914
                program.global_block()._insert_op(
915
                    index=op_index + 2,
916
                    type="send",
917
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
918 919
                    outputs={},
                    attrs={
920
                        "sync_mode": True,
Y
Yancey1989 已提交
921 922 923
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
924 925 926 927 928 929
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
958 959

    def _create_table_optimize_block(self, pserver_index, pserver_program,
960
                                     pre_block_idx, grad_to_block_id):
961 962
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
963 964
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
965

T
tangwei12 已提交
966
        zero_dim = int(
T
tangwei12 已提交
967 968 969 970
            math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints)))
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
971 972
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
973
            shape=table_shape,
Y
Yancey1989 已提交
974 975 976
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
977 978
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
979
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
980
            self.origin_program.global_block().vars[grad_var_name(
981
                self.table_name)])
982 983 984 985

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
986 987
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
988
        ][0]
Q
qiaolongfei 已提交
989
        table_opt_block = pserver_program.create_block(pre_block_idx)
990

991 992 993
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
994
            pserver_side_table_grad_list = [
995 996 997 998 999 1000 1001 1002 1003
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1004
            # append sum op for pserver_side_table_grad_list
1005 1006
            table_opt_block.append_op(
                type="sum",
1007
                inputs={"X": pserver_side_table_grad_list},
1008 1009
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1010 1011
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1012
            origin_grad_name = grad_var.name
1013 1014
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1015 1016
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1017
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1018
            grad_var = pserver_program.global_block()._rename_var(
1019
                origin_grad_name, splited_grad_name)
1020 1021 1022 1023 1024 1025 1026 1027 1028

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1029
        # only support sgd now
1030 1031 1032 1033
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1034
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1035

1036 1037 1038
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1039 1040
        return table_opt_block

T
tangwei12 已提交
1041 1042 1043 1044 1045 1046
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1047
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1048
            name="kLookupTablePath",
T
tangwei12 已提交
1049 1050
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1051

T
tangwei12 已提交
1052
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
1053
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1054 1055 1056 1057
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1058
            attrs={'file_path': "none"})
T
tangwei12 已提交
1059 1060 1061

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1062 1063 1064 1065 1066
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1067
        Create vars for each split.
T
typhoonzero 已提交
1068 1069
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1070 1071 1072 1073
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1074 1075
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
1076
                from original var name to each var split.
T
typhoonzero 已提交
1077
        """
1078 1079

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
1080
        block_map = dict()
1081

T
typhoonzero 已提交
1082
        var_mapping = dict()
T
typhoonzero 已提交
1083 1084
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1085
            if varname not in block_map:
T
typhoonzero 已提交
1086
                block_map[varname] = []
1087
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1088

1089
        for varname, splited in list(block_map.items()):
T
typhoonzero 已提交
1090
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1091
            if len(splited) == 1:
1092
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1093 1094
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1095
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1096 1097 1098 1099 1100
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1101
                continue
T
typhoonzero 已提交
1102
            var_mapping[varname] = []
T
typhoonzero 已提交
1103 1104 1105 1106
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1107

T
typhoonzero 已提交
1108
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1109
                size = block[1]
T
typhoonzero 已提交
1110 1111 1112 1113
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1114
                new_var_name = ""
1115
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1116 1117 1118 1119 1120
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
1121
                var = program.global_block().create_var(
T
typhoonzero 已提交
1122 1123
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1124
                    dtype=orig_var.dtype,
1125
                    type=orig_var.type,
T
typhoonzero 已提交
1126
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1127
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1128
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1129
        return var_mapping
T
done  
typhoonzero 已提交
1130

W
Wu Yi 已提交
1131
    def _create_splited_vars(self, source_var, block, tag):
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1142 1143 1144 1145 1146 1147
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1148
            persistable=persistable)
T
done  
typhoonzero 已提交
1149

Y
Yancey1989 已提交
1150
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1151 1152 1153 1154
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1155
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1165
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1175

T
typhoonzero 已提交
1176 1177 1178 1179
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1180
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1203 1204
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1205
        orig_var_name = ""
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1216
        else:
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1244
        else:
1245 1246 1247 1248 1249 1250
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1251
            for i in range(self.trainer_num):
1252 1253 1254 1255 1256 1257 1258
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1259 1260
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1261 1262 1263 1264 1265 1266 1267 1268
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1269

1270
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1271
                            grad_to_block_id, origin_program, merged_var):
1272
        program = optimize_block.program
T
typhoonzero 已提交
1273
        pserver_block = program.global_block()
T
typhoonzero 已提交
1274
        new_inputs = dict()
W
Wu Yi 已提交
1275

T
typhoonzero 已提交
1276 1277
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
W
Wu Yi 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286
        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1287
        for key in opt_op.input_names:
T
typhoonzero 已提交
1288 1289
            if key == "Grad":
                new_inputs[key] = merged_var
W
Wu Yi 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
            # For RMSProp optimizer
            elif key == "Moment" or key == "MeanSquare":
                param_block = _get_param_block(opt_op)
                if not param_block:
                    return
                moment_var = origin_program.global_block().vars[opt_op.input(
                    key)[0]]
                tmpvar = pserver_block.create_var(
                    name=moment_var.name,
                    persistable=moment_var.persistable,
                    dtype=moment_var.dtype,
                    # change to use same shape as param
                    # TODO(typhoonzero): didn't append .block in the var name,
                    # may affect checkpoint saving? Need to verify.
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
1306
            elif key == "Param":
W
Wu Yi 已提交
1307
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1308 1309
                if not param_block:
                    return
T
typhoonzero 已提交
1310
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1311
                    name=param_block.name,
T
typhoonzero 已提交
1312
                    persistable=True,
T
typhoonzero 已提交
1313 1314 1315
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1316
            elif key == "LearningRate":
1317
                # learning rate variable has already be created by non-optimize op,
1318
                # don't create it once again.
1319
                lr_varname = opt_op.input(key)[0]
1320
                if lr_varname in pserver_block.vars:
1321 1322 1323 1324 1325 1326 1327 1328 1329
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1330

T
typhoonzero 已提交
1331
        for key in opt_op.input_names:
1332
            new_shape = None
W
Wu Yi 已提交
1333
            if key in ["Param", "Grad", "LearningRate", "Moment", "MeanSquare"]:
T
typhoonzero 已提交
1334
                continue
1335
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1336 1337 1338 1339
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1340
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1341 1342 1343 1344 1345
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1346

1347
        # change output's ParamOut variable
1348 1349
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1350
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1351

1352
        optimize_block.append_op(
T
typhoonzero 已提交
1353 1354
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1355
            outputs=outputs,
G
gongweibao 已提交
1356
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1357

1358 1359
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
1360 1361
        # TODO(minqiyang): replace these items() with six.iteritems() to
        # improve memory
1362
        for _, g in list(var_dict.items()):
1363 1364 1365 1366 1367 1368
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1369 1370 1371
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
1372
        for key, varlist in list(inputs.items()):
Q
Qiyang Min 已提交
1373 1374 1375 1376
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1377
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1378 1379 1380

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
1381
        for key, varlist in list(outputs.items()):
Q
Qiyang Min 已提交
1382 1383 1384 1385
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1386
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1387

Y
Yancey1989 已提交
1388
        return block.append_op(
G
gongweibao 已提交
1389
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1390 1391

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1392
        program = optimize_block.program
1393
        # Append the ops for parameters that do not need to be optimized/updated
1394 1395
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1396
        for key, varlist in list(inputs.items()):
1397 1398
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1399
            for var in varlist:
1400 1401 1402 1403 1404 1405
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1406
                elif var.name not in program.global_block().vars:
1407
                    program.global_block().create_var(
T
typhoonzero 已提交
1408 1409 1410 1411 1412
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1413 1414
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1415
        for key, varlist in list(outputs.items()):
1416 1417 1418
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1419 1420 1421 1422
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1423
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1424
                    program.global_block()._clone_variable(var)
1425

Y
Yancey1989 已提交
1426
        return optimize_block.append_op(
T
typhoonzero 已提交
1427
            type=opt_op.type,
T
typhoonzero 已提交
1428 1429
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1430
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1431

1432 1433 1434 1435
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1436 1437
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1438 1439 1440 1441 1442 1443
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1444 1445
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1446 1447 1448 1449 1450 1451
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1452
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1453 1454
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1455 1456 1457 1458 1459 1460 1461
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1462
        if op.input("Param")[0] in param_names:
1463 1464 1465
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1466
                param = op.input("Param")[0]
T
typhoonzero 已提交
1467
                if same_or_split_var(n, param) and n != param:
1468 1469 1470
                    return True
            return False

T
typhoonzero 已提交
1471
    def _get_input_map_from_op(self, varmap, op):
1472
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1485
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1496 1497 1498 1499 1500 1501

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1502
            if self._is_optimizer_op(op):
1503 1504 1505 1506
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1507
        block = self.origin_program.global_block()
1508 1509 1510 1511 1512
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1513

1514 1515 1516 1517 1518
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1519
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1520 1521 1522 1523 1524 1525
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1526 1527
                    # we only need to append op for once
                    break
1528
        return lr_ops
Y
Yancey1989 已提交
1529

W
Wu Yi 已提交
1530 1531 1532 1533 1534
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1535 1536
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1537 1538 1539
            return True
        return False

Y
Yancey1989 已提交
1540
    def _get_optimize_pass(self):
1541
        """
1542
        Get optimizer operators, parameters and gradients from origin_program
1543 1544 1545 1546
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1547 1548 1549
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1550
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1551
        for op in block.ops:
W
Wu Yi 已提交
1552
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1553
                opt_ops.append(op)
1554 1555 1556 1557 1558
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
G
gongweibao 已提交
1559 1560
                        op.attr(RPC_OP_ROLE_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1561 1562 1563 1564
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1565 1566 1567
            else:
                pass
        return opt_ops, params_grads