distribute_transpiler.py 58.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
19
4. append send_op to send splited variables to server and
20 21
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
22 23 24 25 26 27 28 29

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
30

T
typhoonzero 已提交
31
from __future__ import print_function
32

T
typhoonzero 已提交
33
import math
34
import numpy as np
35

Y
Yancey1989 已提交
36
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
37
from .. import core, framework
T
typhoonzero 已提交
38
from ..framework import Program, default_main_program, \
Q
Qiyang Min 已提交
39
                        default_startup_program, Block, \
T
typhoonzero 已提交
40
                        Variable, Parameter, grad_var_name
41
from details import *
42 43 44

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
45
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
46 47 48
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
49 50


T
typhoonzero 已提交
51 52 53 54 55 56
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
57

T
typhoonzero 已提交
58 59
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
60 61


62 63 64 65
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


66
def slice_variable(var_list, slice_count, min_block_size=8192):
T
typhoonzero 已提交
67
    """
68 69 70 71 72 73
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
74
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
75 76 77

    Args:
        var_list (list): List of variables.
78 79
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
80 81
        min_block_size (int): Minimum splitted block size.
    Returns:
82
        blocks (list[(varname, block_id, current_block_size)]): A list
83
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
84 85 86
    """
    blocks = []
    for var in var_list:
87
        split_count = slice_count
T
typhoonzero 已提交
88 89 90 91
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
92
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
93 94 95 96 97 98 99 100 101
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
102
        # update split_count after aligning
T
typhoonzero 已提交
103 104 105 106 107 108 109 110 111
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


Y
gen rst  
yi.wu 已提交
112
class DistributeTranspiler(object):
Y
yi.wu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.

    The main_program will be transformed to use a remote parameter server
    to do parameter optimization. And the optimization graph will be put
    into a parameter server program.

    Examples:
        .. code-block:: python

           # Define your model before these codes.
           port = os.getenv("PADDLE_PSERVER_PORT", "6174")
           pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
           eplist = []
           for ip in pserver_ips.split(","):
                eplist.append(':'.join([ip, port]))
           pserver_endpoints = ",".join(eplist)
           trainers = int(os.getenv("PADDLE_TRAINERS"))
           current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
           trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
           role = os.getenv("PADDLE_TRAINING_ROLE")

           t = distribute_transpiler.DistributeTranspiler()
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
    """
Y
Yancey1989 已提交
147

148 149 150 151 152
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
153
                  slice_var_up=True,
154 155 156
                  split_method=RoundRobin,
                  sync_mode=True):
        """
Y
yi.wu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
            trainers (int): number of trainers in the distributed job.
            slice_var_up (bool): Do Tensor slice for pservers, default is True.
            split_method (PSDispatcher): RoundRobin or HashName can be used
                try to choose the best method to balance loads for pservers.
            sync_mode (bool): Do sync training or not, default is True.
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
187
        self._init_splited_vars(slice_var_up)
188

Y
Yancey1989 已提交
189 190
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
191
        send_vars = []
192 193 194 195 196 197

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
198
        grad_var_mapping_items = self.grad_var_mapping.items()
199 200

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
201
            eplist = ps_dispatcher.dispatch(splited_vars)
202

203
            if not slice_var_up:
204 205
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
206 207 208 209 210 211 212 213 214
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
215
                index += 1
Y
Yancey1989 已提交
216 217 218 219
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
220
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
221
                index=index + 1,
222
                type="send",
Y
update  
Yancey1989 已提交
223
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
224 225 226 227 228
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
229 230
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
231 232 233 234 235

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
236
                outputs={},
Y
Yancey1989 已提交
237 238
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
239 240
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
241
                })
Y
Yancey1989 已提交
242 243 244

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
245
        for _, var in enumerate(send_vars):
246
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
247
        ps_dispatcher.reset()
Y
Yancey1989 已提交
248 249
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
250
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
251 252
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
253

Y
Yancey1989 已提交
254
        # step4: Concat the parameters splits together after recv.
255
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
256 257 258 259 260 261 262 263
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
264 265 266 267 268
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
269

T
typhoonzero 已提交
270
        program.global_block().append_op(
Y
Yancey1989 已提交
271 272
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
273
            outputs={},
Q
qiaolongfei 已提交
274 275
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
276
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
277
            })
Y
Yancey1989 已提交
278

279
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
280 281
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
282
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
283
            program.global_block().append_op(
T
typhoonzero 已提交
284
                type="concat",
T
typhoonzero 已提交
285
                inputs={"X": splited_var},
T
typhoonzero 已提交
286
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
287
                attrs={"axis": 0})
T
typhoonzero 已提交
288

289
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
290 291
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
292
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
293

T
typhoonzero 已提交
294
    def get_trainer_program(self):
Y
yi.wu 已提交
295 296 297 298 299 300
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
301
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
302
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
303
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
304 305
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
306 307 308

    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
309
        Get parameter server side program.
310

Y
yi.wu 已提交
311 312
        Args:
            endpoint (str): current parameter server endpoint.
313

Y
yi.wu 已提交
314 315
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
316
        """
Y
yi.wu 已提交
317 318 319 320 321
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.

T
typhoonzero 已提交
322 323
        # step1
        pserver_program = Program()
324
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
325 326 327 328 329 330 331 332
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
333 334 335 336 337
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
338 339 340 341 342 343 344 345 346
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
347
            if self.sync_mode and self.trainer_num > 1:
348
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
349 350 351 352 353 354 355 356 357
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
358

Q
qiaolongfei 已提交
359
        # step 3
360
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
361 362 363
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
364
        # step 3.2
T
typhoonzero 已提交
365 366 367 368
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
369 370
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
371
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
372
        # step 3.3
T
typhoonzero 已提交
373
        # Iterate through the ops, and if an op and the optimize ops
374
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
375
        # append it into the sub program.
T
typhoonzero 已提交
376 377 378

        global_ops = []

Y
wip  
yi.wu 已提交
379 380
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
381
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
382
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
383
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
384
            elif op not in lr_ops:
Q
Qiyang Min 已提交
385
                self._append_pserver_non_opt_ops(block, op)
386 387 388 389 390 391

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
392

Y
Yancey1989 已提交
393
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
394 395 396 397 398 399 400 401
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
Y
Yancey1989 已提交
402
            new_sub_block = program.create_block(lr_block.idx)
Q
Qiyang Min 已提交
403 404 405 406 407 408

            # clone vars
            for var in origin_block.vars:
                new_sub_block.clone_variable(var)

            # clone ops
Y
Yancey1989 已提交
409 410
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
411
                # clone sub_block of op
Y
Yancey1989 已提交
412
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
413 414 415 416

            # reset the block of op
            op.set_attr('sub_block', new_sub_block)

417
        # append lr decay ops to the child block if exists
418
        lr_ops = self._get_lr_ops()
419 420
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
421
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
422 423
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
424
            optimize_blocks.append(lr_decay_block)
425
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
426
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
427
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
428 429
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
430

T
typhoonzero 已提交
431
        # append op to the current block
Q
qiaolongfei 已提交
432
        grad_to_block_id = []
Q
qiaolongfei 已提交
433
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
434
        for idx, opt_op in enumerate(opt_op_on_pserver):
435
            per_opt_block = pserver_program.create_block(pre_block_idx)
436
            optimize_blocks.append(per_opt_block)
437 438 439 440 441 442 443 444
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
445 446
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
447
                if ufind.is_connected(op, opt_op) and op not in global_ops:
448
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
Y
wip  
yi.wu 已提交
449
                                           merged_var, lr_ops)
T
typhoonzero 已提交
450

W
Wu Yi 已提交
451 452
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
453
        # append global ops
454
        if global_ops:
Q
qiaolongfei 已提交
455 456
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
457
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
458
            for glb_op in global_ops:
X
Xi Chen 已提交
459
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
460
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
461

462
        # process distributed lookup_table
Q
qiaolongfei 已提交
463
        prefetch_var_name_to_block_id = []
464 465
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
466
            table_opt_block = self._create_table_optimize_block(
467
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
Q
qiaolongfei 已提交
468
            prefetch_var_name_to_block_id = self._create_prefetch_block(
469
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
470 471
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
472 473 474 475

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
476
            assert len(prefetch_var_name_to_block_id) > 0
477
        else:
Q
qiaolongfei 已提交
478
            assert len(prefetch_var_name_to_block_id) == 0
479

480
        attrs = {
481
            "optimize_blocks": optimize_blocks,
482 483 484
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
485
            "grad_to_block_id": grad_to_block_id,
486 487 488 489
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id
T
tangwei12 已提交
490
            attrs['checkpint_block_id'] = checkpoint_block_id
491

T
typhoonzero 已提交
492 493 494 495 496
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
497
            attrs=attrs)
498

T
typhoonzero 已提交
499 500 501 502 503 504 505 506
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
507 508 509 510 511

        Args:
            endpoint (str): current pserver endpoint.
            pserver_program (Program): call get_pserver_program first and
                pass the result here.
512

Y
yi.wu 已提交
513 514
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
515 516
        """
        s_prog = Program()
T
typhoonzero 已提交
517
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
531
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            if op_on_pserver:
549 550 551
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
552 553 554 555 556 557 558 559 560 561 562
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

563 564
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

    def _init_splited_vars(self, slice_var_up):
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

        if slice_var_up:
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
            param_blocks = slice_variable(param_list,
                                          len(self.pserver_endpoints))
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
            grad_blocks = slice_variable(grad_list, 1)
            param_blocks = slice_variable(param_list, 1)
        assert (len(grad_blocks) == len(param_blocks))

        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

688
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
689 690
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
691
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
692 693 694 695 696 697 698 699 700
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
701 702 703 704 705 706 707 708 709

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

710
                    lookup_table_op_index = list(all_ops).index(op)
711 712 713
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
727 728 729

                    # insert split_ids_op
                    program.global_block().insert_op(
730
                        index=lookup_table_op_index,
731 732 733 734 735 736 737
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
738
                        outputs={"Out": prefetch_input_vars})
739 740 741

                    # insert prefetch_op
                    program.global_block().insert_op(
742
                        index=lookup_table_op_index + 1,
743
                        type="prefetch",
Q
qiaolongfei 已提交
744 745
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
746
                        attrs={
747
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
748 749
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
750 751 752

                    # insert concat_op
                    program.global_block().insert_op(
753 754 755 756 757 758 759
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
760
                            'X': prefetch_output_vars
761
                        },
762 763 764 765 766
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
767
                        })
768 769

                    # delete lookup_table_op
770
                    delete_ops(program.global_block(), [op])
771 772 773
                    # break for loop
                    break

Y
Yancey1989 已提交
774
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
775
        # 2. add split_ids_op and send_op to send gradient to pservers
776 777
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
778
        table_grad_name = grad_var_name(self.table_name)
779 780 781 782 783 784 785 786 787 788
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
789
                    outputs={"Out": self.trainer_side_table_grad_list})
790 791
                program.global_block().insert_op(
                    index=op_index + 2,
792
                    type="send",
793
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
794 795
                    outputs={},
                    attrs={
796
                        "sync_mode": True,
Y
Yancey1989 已提交
797 798 799
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
800 801 802 803 804 805
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
834 835

    def _create_table_optimize_block(self, pserver_index, pserver_program,
836
                                     pre_block_idx, grad_to_block_id):
837 838
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
839 840 841 842 843 844 845 846
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
847 848 849
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
850
            self.origin_program.global_block().vars[grad_var_name(
851
                self.table_name)])
852 853 854 855 856 857

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
858
        table_opt_block = pserver_program.create_block(pre_block_idx)
859 860 861
        # only support sgd now
        assert table_opt_op.type == "sgd"

862 863 864
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
865
            pserver_side_table_grad_list = [
866 867 868 869 870 871 872 873 874
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

875
            # append sum op for pserver_side_table_grad_list
876 877
            table_opt_block.append_op(
                type="sum",
878
                inputs={"X": pserver_side_table_grad_list},
879 880
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
881 882
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
883
            origin_grad_name = grad_var.name
884 885
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
886 887
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
888
                                 " grad_var:" + grad_var.name)
889 890
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

906 907 908
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

909 910
        return table_opt_block

T
tangwei12 已提交
911 912 913 914 915 916
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
917
        pserver_program.global_block().create_var(
T
tangwei12 已提交
918
            name="kLookupTablePath",
T
tangwei12 已提交
919 920
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
921

T
tangwei12 已提交
922
        checkpoint_save_block = pserver_program.create_block(pre_block_idx)
T
tangwei12 已提交
923
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
924 925 926 927
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
928
            attrs={'file_path': "none"})
T
tangwei12 已提交
929 930 931

        return checkpoint_save_block.idx

T
typhoonzero 已提交
932 933 934 935 936
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
937
        Create vars for each split.
T
typhoonzero 已提交
938 939
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
940 941 942 943
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
944 945
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
946
                from original var name to each var split.
T
typhoonzero 已提交
947
        """
948 949

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
950
        block_map = dict()
951

T
typhoonzero 已提交
952
        var_mapping = dict()
T
typhoonzero 已提交
953 954 955 956 957
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
958

T
typhoonzero 已提交
959
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
960
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
961
            if len(splited) == 1:
962
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
963 964 965 966 967 968 969 970
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
971
                continue
T
typhoonzero 已提交
972 973

            var_mapping[varname] = []
T
typhoonzero 已提交
974 975 976 977
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
978

T
typhoonzero 已提交
979
            for i, block in enumerate(splited):
T
typhoonzero 已提交
980
                size = block[1]
T
typhoonzero 已提交
981 982 983 984
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
985
                new_var_name = ""
986
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
987 988 989 990 991
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
992
                var = program.global_block().create_var(
T
typhoonzero 已提交
993 994
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
995
                    dtype=orig_var.dtype,
996
                    type=orig_var.type,
T
typhoonzero 已提交
997
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
998
                var_mapping[varname].append(var)
T
typhoonzero 已提交
999
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
1000
        return var_mapping
T
done  
typhoonzero 已提交
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1013 1014 1015 1016 1017 1018 1019
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1020
            persistable=persistable)
T
done  
typhoonzero 已提交
1021

Y
Yancey1989 已提交
1022
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1047

T
typhoonzero 已提交
1048 1049 1050 1051
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1052
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

1075 1076
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1077
        orig_var_name = ""
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1088
        else:
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1116
        else:
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1131 1132
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
1133 1134 1135 1136 1137 1138 1139 1140
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1141

1142
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1143
                            grad_to_block_id, origin_program, merged_var):
1144
        program = optimize_block.program
T
typhoonzero 已提交
1145
        pserver_block = program.global_block()
T
typhoonzero 已提交
1146
        new_inputs = dict()
T
typhoonzero 已提交
1147 1148
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1149
        for key in opt_op.input_names:
T
typhoonzero 已提交
1150 1151 1152 1153 1154 1155
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1156
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1157 1158 1159 1160
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1161
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1162
                    name=param_block.name,
T
typhoonzero 已提交
1163
                    persistable=True,
T
typhoonzero 已提交
1164 1165 1166
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1167
            elif key == "LearningRate":
1168
                # learning rate variable has already be created by non-optimize op,
1169
                # don't create it once again.
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1181

T
typhoonzero 已提交
1182
        for key in opt_op.input_names:
1183 1184
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1185
                continue
1186
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1187 1188 1189 1190
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1191
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1192 1193 1194 1195 1196
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1197

1198
        # change output's ParamOut variable
1199 1200
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1201
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1202

1203
        optimize_block.append_op(
T
typhoonzero 已提交
1204 1205
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1206
            outputs=outputs,
T
typhoonzero 已提交
1207 1208
            attrs=opt_op.attrs)

1209 1210 1211 1212 1213 1214 1215 1216 1217
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in inputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
                    block.clone_variable(var)

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
        for key, varlist in outputs.iteritems():
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
                    block.clone_variable(var)

Y
Yancey1989 已提交
1237
        return block.append_op(
Q
Qiyang Min 已提交
1238 1239 1240
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.attrs)

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1241
        program = optimize_block.program
1242
        # Append the ops for parameters that do not need to be optimized/updated
1243 1244
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1245
        for key, varlist in inputs.iteritems():
1246 1247
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1248
            for var in varlist:
1249 1250 1251 1252 1253 1254 1255
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1256
                    program.global_block().create_var(
T
typhoonzero 已提交
1257 1258 1259 1260 1261
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1262 1263
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1264
        for key, varlist in outputs.iteritems():
1265 1266 1267
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1268 1269 1270 1271 1272 1273
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1274

Y
Yancey1989 已提交
1275
        return optimize_block.append_op(
T
typhoonzero 已提交
1276
            type=opt_op.type,
T
typhoonzero 已提交
1277 1278
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1279 1280
            attrs=opt_op.attrs)

1281 1282 1283 1284
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1285 1286
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
           set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1301
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1302 1303
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1304 1305 1306 1307 1308 1309 1310
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1311
        if op.input("Param")[0] in param_names:
1312 1313 1314
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1315
                param = op.input("Param")[0]
T
typhoonzero 已提交
1316
                if same_or_split_var(n, param) and n != param:
1317 1318 1319
                    return True
            return False

T
typhoonzero 已提交
1320
    def _get_input_map_from_op(self, varmap, op):
1321
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1334
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1345 1346 1347 1348 1349 1350

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1351
            if self._is_optimizer_op(op):
1352 1353 1354 1355
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1356
        block = self.origin_program.global_block()
1357 1358 1359 1360 1361
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1362

1363 1364 1365 1366 1367
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1368
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1369 1370 1371 1372 1373 1374
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1375 1376
                    # we only need to append op for once
                    break
1377
        return lr_ops
Y
Yancey1989 已提交
1378

W
Wu Yi 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

Y
Yancey1989 已提交
1389
    def _get_optimize_pass(self):
1390
        """
1391
        Get optimizer operators, parameters and gradients from origin_program
1392 1393 1394 1395
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1396 1397 1398
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1399
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1400
        for op in block.ops:
W
Wu Yi 已提交
1401
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1402
                opt_ops.append(op)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
Y
Yancey1989 已提交
1414 1415 1416
            else:
                pass
        return opt_ops, params_grads