test_imperative_ptb_rnn.py 15.2 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17 18

import numpy as np
from test_imperative_base import new_program_scope
19
from utils import DyGraphProgramDescTracerTestHelper
20

L
Leo Chen 已提交
21
import paddle
J
JiabinYang 已提交
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
J
JiabinYang 已提交
24
import paddle.fluid.framework as framework
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.framework import _test_eager_guard
27
from paddle.fluid.optimizer import SGDOptimizer
28
from paddle.nn import Embedding
J
JiabinYang 已提交
29 30


31
class SimpleLSTMRNN(fluid.Layer):
32 33 34
    def __init__(
        self, hidden_size, num_steps, num_layers=2, init_scale=0.1, dropout=None
    ):
35
        super().__init__()
J
JiabinYang 已提交
36 37 38 39
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
40 41
        self._input = None
        self._num_steps = num_steps
42 43
        self.cell_array = []
        self.hidden_array = []
44
        self._create_parameter()
J
JiabinYang 已提交
45

46
    def _create_parameter(self):
J
JiabinYang 已提交
47 48 49 50 51 52
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
53
            weight_1 = self.create_parameter(
54 55
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
56 57 58
                        low=-self._init_scale, high=self._init_scale
                    )
                ),
J
JiabinYang 已提交
59 60 61
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
62 63 64
                    low=-self._init_scale, high=self._init_scale
                ),
            )
65
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
66
            bias_1 = self.create_parameter(
67 68
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
69 70 71
                        low=-self._init_scale, high=self._init_scale
                    )
                ),
72
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
73
                dtype="float32",
74 75
                default_initializer=fluid.initializer.Constant(0.0),
            )
76
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
77

78 79 80 81 82
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
2
201716010711 已提交
83
            pre_hidden = paddle.slice(
84 85
                init_hidden, axes=[0], starts=[i], ends=[i + 1]
            )
2
201716010711 已提交
86
            pre_cell = paddle.slice(
87 88
                init_cell, axes=[0], starts=[i], ends=[i + 1]
            )
89
            pre_hidden = paddle.reshape(
90 91
                pre_hidden, shape=[-1, self._hidden_size]
            )
92
            pre_cell = paddle.reshape(pre_cell, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
93 94 95 96
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
97
        for index in range(self._num_steps):
2
201716010711 已提交
98
            self._input = paddle.slice(
99 100
                input_embedding, axes=[1], starts=[index], ends=[index + 1]
            )
101
            self._input = paddle.reshape(
102 103
                self._input, shape=[-1, self._hidden_size]
            )
J
JiabinYang 已提交
104 105 106 107 108 109
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

110
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
K
kangguangli 已提交
111
                gate_input = paddle.matmul(x=nn, y=weight_1)
J
JiabinYang 已提交
112

113
                gate_input = paddle.add(gate_input, bias)
114 115 116
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1
                )
117 118 119 120
                c = pre_cell * paddle.nn.functional.sigmoid(
                    f
                ) + paddle.nn.functional.sigmoid(i) * paddle.tanh(j)
                m = paddle.tanh(c) * paddle.nn.functional.sigmoid(o)
121 122 123 124 125 126 127 128
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
129 130
                        dropout_implementation='upscale_in_train',
                    )
131
            res.append(
132
                paddle.reshape(self._input, shape=[1, -1, self._hidden_size])
133
            )
134
        real_res = fluid.layers.concat(res, 0)
135
        real_res = paddle.transpose(x=real_res, perm=[1, 0, 2])
136
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
137
        last_hidden = paddle.reshape(
138 139
            last_hidden, shape=[-1, self._num_layers, self._hidden_size]
        )
140
        last_hidden = paddle.transpose(x=last_hidden, perm=[1, 0, 2])
141
        last_cell = fluid.layers.concat(self.cell_array, 1)
142
        last_cell = paddle.reshape(
143 144
            last_cell, shape=[-1, self._num_layers, self._hidden_size]
        )
145
        last_cell = paddle.transpose(x=last_cell, perm=[1, 0, 2])
146
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
147 148


149
class PtbModel(fluid.Layer):
150 151 152 153 154 155 156 157 158 159
    def __init__(
        self,
        hidden_size,
        vocab_size,
        num_layers=2,
        num_steps=20,
        init_scale=0.1,
        is_sparse=False,
        dropout=None,
    ):
160
        super().__init__()
J
JiabinYang 已提交
161 162 163 164 165 166
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
167 168 169 170 171 172 173
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout,
        )
174
        self.embedding = Embedding(
175 176 177 178
            vocab_size,
            hidden_size,
            sparse=is_sparse,
            weight_attr=fluid.ParamAttr(
J
JiabinYang 已提交
179 180
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
181 182 183 184
                    low=-init_scale, high=init_scale
                ),
            ),
        )
185
        self.softmax_weight = self.create_parameter(
186 187
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
188 189
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
190 191 192
                low=-self.init_scale, high=self.init_scale
            ),
        )
193
        self.softmax_bias = self.create_parameter(
194 195
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
196 197
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
198 199 200
                low=-self.init_scale, high=self.init_scale
            ),
        )
J
JiabinYang 已提交
201 202

    def forward(self, input, label, init_hidden, init_cell):
203
        init_h = paddle.reshape(
204 205
            init_hidden, shape=[self.num_layers, -1, self.hidden_size]
        )
J
JiabinYang 已提交
206

207
        init_c = paddle.reshape(
208 209
            init_cell, shape=[self.num_layers, -1, self.hidden_size]
        )
J
JiabinYang 已提交
210 211

        x_emb = self.embedding(input)
212
        x_emb = paddle.reshape(
213 214
            x_emb, shape=[-1, self.num_steps, self.hidden_size]
        )
J
JiabinYang 已提交
215 216 217 218
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
219 220
                dropout_implementation='upscale_in_train',
            )
221
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(
222 223
            x_emb, init_h, init_c
        )
224
        rnn_out = paddle.reshape(
225 226
            rnn_out, shape=[-1, self.num_steps, self.hidden_size]
        )
K
kangguangli 已提交
227
        projection = paddle.matmul(rnn_out, self.softmax_weight)
228
        projection = paddle.add(projection, self.softmax_bias)
229
        projection = paddle.reshape(projection, shape=[-1, self.vocab_size])
230
        loss = paddle.nn.functional.softmax_with_cross_entropy(
231 232
            logits=projection, label=label, soft_label=False
        )
233
        loss = paddle.reshape(loss, shape=[-1, self.num_steps])
234
        loss = paddle.mean(loss, axis=[0])
235
        loss = paddle.sum(loss)
J
JiabinYang 已提交
236 237 238 239

        return loss, last_hidden, last_cell


L
lujun 已提交
240
class TestDygraphPtbRnn(unittest.TestCase):
241
    def func_test_ptb_rnn(self):
242 243 244
        for is_sparse in [True, False]:
            self.ptb_rnn_cpu_float32(is_sparse)

245 246 247 248 249
    def test_ptb_rnn(self):
        with _test_eager_guard():
            self.func_test_ptb_rnn()
        self.func_test_ptb_rnn()

250
    def ptb_rnn_cpu_float32(self, is_sparse):
J
JiabinYang 已提交
251 252 253 254 255 256 257
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
258
        batch_num = 200
259 260
        traced_layer = None

L
lujun 已提交
261
        with fluid.dygraph.guard():
C
cnn 已提交
262
            paddle.seed(seed)
L
Leo Chen 已提交
263
            paddle.framework.random._manual_program_seed(seed)
J
JiabinYang 已提交
264
            # TODO: marsyang1993 Change seed to
265 266 267 268 269 270 271 272 273 274 275 276
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale,
                is_sparse=is_sparse,
            )

            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=ptb_model.parameters()
            )
277 278
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
279 280 281
            dy_loss = None
            last_hidden = None
            last_cell = None
282

283 284
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
285

286
            for i in range(batch_num):
J
JiabinYang 已提交
287 288 289 290
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
291 292 293 294 295
                    (num_layers, batch_size, hidden_size), dtype='float32'
                )
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32'
                )
J
JiabinYang 已提交
296 297 298 299
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
300

301
                outs = ptb_model(x, y, init_hidden, init_cell)
302 303 304

                dy_loss, last_hidden, last_cell = outs

J
JiabinYang 已提交
305
                if i == 0:
306
                    for param in ptb_model.parameters():
307
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
308
                dy_loss.backward()
J
JiabinYang 已提交
309
                sgd.minimize(dy_loss)
310 311 312
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
313
                        dy_param_updated[param.name] = param.numpy()
314

315 316 317 318
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

319
        with new_program_scope():
C
cnn 已提交
320
            paddle.seed(seed)
L
Leo Chen 已提交
321
            paddle.framework.random._manual_program_seed(seed)
322 323 324 325 326 327 328 329 330 331 332 333 334 335
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
                init_scale=init_scale,
                is_sparse=is_sparse,
            )

            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
336
            sgd = SGDOptimizer(learning_rate=1e-3)
337 338 339
            x = fluid.layers.data(
                name="x", shape=[-1, num_steps], dtype='int64'
            )
340
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
341 342 343 344 345 346
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32'
            )
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32'
            )
347 348

            static_loss, static_last_hidden, static_last_cell = ptb_model(
349 350
                x, y, init_hidden, init_cell
            )
351 352 353 354
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
355
            for param in ptb_model.parameters():
356 357
                static_param_name_list.append(param.name)

358 359 360 361
            out = exe.run(
                framework.default_startup_program(),
                fetch_list=static_param_name_list,
            )
362 363
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
364 365 366
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
367
            for i in range(batch_num):
368 369 370 371 372
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
373 374 375 376 377
                    (num_layers, batch_size, hidden_size), dtype='float32'
                )
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32'
                )
378 379
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
380 381 382 383 384 385 386 387 388 389
                out = exe.run(
                    fluid.default_main_program(),
                    feed={
                        "x": x_data,
                        "y": y_data,
                        "init_hidden": init_hidden_data,
                        "init_cell": init_cell_data,
                    },
                    fetch_list=fetch_list,
                )
390
                static_loss_value = out[0]
391 392
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
393

394 395
                if i == batch_num - 1:
                    for k in range(3, len(out)):
396 397 398
                        static_param_updated[
                            static_param_name_list[k - 3]
                        ] = out[k]
399

400
        np.testing.assert_array_equal(static_loss_value, dy_loss_value)
401 402 403 404 405 406
        np.testing.assert_array_equal(
            static_last_cell_value, dy_last_cell_value
        )
        np.testing.assert_array_equal(
            static_last_hidden_value, dy_last_hidden_value
        )
407
        for key, value in static_param_init.items():
408
            np.testing.assert_array_equal(value, dy_param_init[key])
409
        for key, value in static_param_updated.items():
410
            np.testing.assert_array_equal(value, dy_param_updated[key])
J
JiabinYang 已提交
411 412 413 414


if __name__ == '__main__':
    unittest.main()