test_imperative_ptb_rnn.py 15.8 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle.fluid.core as core
L
lujun 已提交
20
from paddle.fluid.dygraph.nn import Embedding
J
JiabinYang 已提交
21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
23
from paddle.fluid.dygraph.base import to_variable
24
from paddle.fluid.dygraph.jit import TracedLayer
25
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
26
import numpy as np
27
import six
28
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
J
JiabinYang 已提交
29 30


31
class SimpleLSTMRNN(fluid.Layer):
J
JiabinYang 已提交
32
    def __init__(self,
X
Xin Pan 已提交
33
                 name_scope,
J
JiabinYang 已提交
34 35 36 37 38
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
X
Xin Pan 已提交
39
        super(SimpleLSTMRNN, self).__init__(name_scope)
J
JiabinYang 已提交
40 41 42 43
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
44 45
        self._input = None
        self._num_steps = num_steps
46 47
        self.cell_array = []
        self.hidden_array = []
J
JiabinYang 已提交
48

49
    def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
J
JiabinYang 已提交
50 51 52 53 54 55
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
56
            weight_1 = self.create_parameter(
57 58 59
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
60 61 62 63
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
64
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
65
            bias_1 = self.create_parameter(
66 67 68 69
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
70 71
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
72
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
73

74 75 76 77 78
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
J
JiabinYang 已提交
79 80 81 82 83 84 85 86 87 88 89 90
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
91 92
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
93
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
94 95
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
96 97 98 99 100 101
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

102
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
103 104 105
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
134 135


136
class PtbModel(fluid.Layer):
J
JiabinYang 已提交
137
    def __init__(self,
X
Xin Pan 已提交
138
                 name_scope,
J
JiabinYang 已提交
139 140 141 142 143
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
144
                 is_sparse=False,
J
JiabinYang 已提交
145
                 dropout=None):
X
Xin Pan 已提交
146
        super(PtbModel, self).__init__(name_scope)
J
JiabinYang 已提交
147 148 149 150 151 152 153
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
X
Xin Pan 已提交
154
            self.full_name(),
J
JiabinYang 已提交
155 156 157 158 159
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
160
        self.embedding = Embedding(
J
JiabinYang 已提交
161 162
            size=[vocab_size, hidden_size],
            dtype='float32',
163
            is_sparse=is_sparse,
J
JiabinYang 已提交
164 165 166 167
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
168
        self.softmax_weight = self.create_parameter(
169 170
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
171 172 173
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
174
        self.softmax_bias = self.create_parameter(
175 176
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
200
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
201 202 203 204 205 206 207 208 209 210 211 212
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


L
lujun 已提交
213
class TestDygraphPtbRnn(unittest.TestCase):
214 215 216 217 218
    def test_ptb_rnn(self):
        for is_sparse in [True, False]:
            self.ptb_rnn_cpu_float32(is_sparse)

    def ptb_rnn_cpu_float32(self, is_sparse):
J
JiabinYang 已提交
219 220 221 222 223 224 225
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
226
        batch_num = 200
227 228
        traced_layer = None

L
lujun 已提交
229
        with fluid.dygraph.guard():
J
JiabinYang 已提交
230 231 232 233
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
X
Xin Pan 已提交
234
                "ptb_model",
J
JiabinYang 已提交
235 236 237 238
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
239 240
                init_scale=init_scale,
                is_sparse=is_sparse)
J
JiabinYang 已提交
241 242

            sgd = SGDOptimizer(learning_rate=1e-3)
243 244
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
245 246 247
            dy_loss = None
            last_hidden = None
            last_cell = None
248

249 250
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
251

252
            for i in range(batch_num):
J
JiabinYang 已提交
253 254 255 256 257 258 259 260 261 262 263
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
264
                if i % 5 == 0:
265 266 267
                    outs, traced_layer = TracedLayer.trace(
                        ptb_model, [x, y, init_hidden, init_cell])
                    outs_static = traced_layer([x, y, init_hidden, init_cell])
268
                    helper.assertEachVar(outs, outs_static)
269 270 271 272 273 274 275 276 277

                    if program is not None:
                        self.assertTrue(
                            is_equal_program(traced_layer.program, program))

                    program = traced_layer.program

                    traced_layer.save_inference_model(
                        './infe_imperative_ptb_rnn', feed=range(4))
278 279 280 281 282
                else:
                    outs = ptb_model(x, y, init_hidden, init_cell)

                dy_loss, last_hidden, last_cell = outs

J
JiabinYang 已提交
283
                if i == 0:
284
                    for param in ptb_model.parameters():
285
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
286
                dy_loss.backward()
J
JiabinYang 已提交
287
                sgd.minimize(dy_loss)
288 289 290
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
291
                        dy_param_updated[param.name] = param.numpy()
292

293 294 295 296
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

297 298 299 300
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
X
Xin Pan 已提交
301
                "ptb_model",
302 303 304 305
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
306 307
                init_scale=init_scale,
                is_sparse=is_sparse)
308

309 310
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
311
            sgd = SGDOptimizer(learning_rate=1e-3)
312
            x = fluid.layers.data(
313
                name="x", shape=[-1, num_steps], dtype='int64')
314 315 316 317 318 319 320 321 322 323 324 325
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
326
            for param in ptb_model.parameters():
327 328 329 330 331 332
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
333 334 335
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
336
            for i in range(batch_num):
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
356 357
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
358

359 360 361 362 363
                if i == batch_num - 1:
                    for k in range(3, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    3]] = out[k]

364
        self.assertTrue(np.array_equal(static_loss_value, dy_loss_value))
365
        self.assertTrue(
366
            np.array_equal(static_last_cell_value, dy_last_cell_value))
367
        self.assertTrue(
368
            np.array_equal(static_last_hidden_value, dy_last_hidden_value))
369
        for key, value in six.iteritems(static_param_init):
370
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
371
        for key, value in six.iteritems(static_param_updated):
372
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
J
JiabinYang 已提交
373 374 375 376


if __name__ == '__main__':
    unittest.main()