test_imperative_ptb_rnn.py 15.6 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
L
Leo Chen 已提交
18
import paddle
J
JiabinYang 已提交
19
import paddle.fluid as fluid
20
import paddle.fluid.core as core
L
lujun 已提交
21
from paddle.fluid.dygraph.nn import Embedding
J
JiabinYang 已提交
22 23
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
24
from paddle.fluid.dygraph.base import to_variable
25
from paddle.fluid.dygraph import TracedLayer
26
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
27
import numpy as np
28
import six
29
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
J
JiabinYang 已提交
30 31


32
class SimpleLSTMRNN(fluid.Layer):
J
JiabinYang 已提交
33 34 35 36 37 38
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
39
        super(SimpleLSTMRNN, self).__init__()
J
JiabinYang 已提交
40 41 42 43
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
44 45
        self._input = None
        self._num_steps = num_steps
46 47
        self.cell_array = []
        self.hidden_array = []
48
        self._create_parameter()
J
JiabinYang 已提交
49

50
    def _create_parameter(self):
J
JiabinYang 已提交
51 52 53 54 55 56
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
57
            weight_1 = self.create_parameter(
58 59 60
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
61 62 63 64
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
65
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
66
            bias_1 = self.create_parameter(
67 68 69 70
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
71 72
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
73
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
74

75 76 77 78 79
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
J
JiabinYang 已提交
80 81 82 83 84 85 86 87 88 89 90 91
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
92 93
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
94
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
95 96
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
97 98 99 100 101 102
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

103
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
104 105 106
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
135 136


137
class PtbModel(fluid.Layer):
J
JiabinYang 已提交
138 139 140 141 142 143
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
144
                 is_sparse=False,
J
JiabinYang 已提交
145
                 dropout=None):
146
        super(PtbModel, self).__init__()
J
JiabinYang 已提交
147 148 149 150 151 152 153 154 155 156 157 158
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
159
        self.embedding = Embedding(
J
JiabinYang 已提交
160 161
            size=[vocab_size, hidden_size],
            dtype='float32',
162
            is_sparse=is_sparse,
J
JiabinYang 已提交
163 164 165 166
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
167
        self.softmax_weight = self.create_parameter(
168 169
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
170 171 172
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
173
        self.softmax_bias = self.create_parameter(
174 175
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
199
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
200 201 202 203 204 205 206 207 208 209 210 211
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


L
lujun 已提交
212
class TestDygraphPtbRnn(unittest.TestCase):
213 214 215 216 217
    def test_ptb_rnn(self):
        for is_sparse in [True, False]:
            self.ptb_rnn_cpu_float32(is_sparse)

    def ptb_rnn_cpu_float32(self, is_sparse):
J
JiabinYang 已提交
218 219 220 221 222 223 224
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
225
        batch_num = 200
226 227
        traced_layer = None

L
lujun 已提交
228
        with fluid.dygraph.guard():
L
Leo Chen 已提交
229 230
            paddle.manual_seed(seed)
            paddle.framework.random._manual_program_seed(seed)
J
JiabinYang 已提交
231 232 233 234 235 236
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
237 238
                init_scale=init_scale,
                is_sparse=is_sparse)
J
JiabinYang 已提交
239

240 241
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=ptb_model.parameters())
242 243
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
244 245 246
            dy_loss = None
            last_hidden = None
            last_cell = None
247

248 249
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
250

251
            for i in range(batch_num):
J
JiabinYang 已提交
252 253 254 255 256 257 258 259 260 261 262
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
263
                if i % 5 == 0:
264 265 266
                    outs, traced_layer = TracedLayer.trace(
                        ptb_model, [x, y, init_hidden, init_cell])
                    outs_static = traced_layer([x, y, init_hidden, init_cell])
267
                    helper.assertEachVar(outs, outs_static)
268 269 270 271 272 273 274 275

                    if program is not None:
                        self.assertTrue(
                            is_equal_program(traced_layer.program, program))

                    program = traced_layer.program

                    traced_layer.save_inference_model(
276
                        './infe_imperative_ptb_rnn', feed=list(range(4)))
277 278 279 280 281
                else:
                    outs = ptb_model(x, y, init_hidden, init_cell)

                dy_loss, last_hidden, last_cell = outs

J
JiabinYang 已提交
282
                if i == 0:
283
                    for param in ptb_model.parameters():
284
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
285
                dy_loss.backward()
J
JiabinYang 已提交
286
                sgd.minimize(dy_loss)
287 288 289
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
290
                        dy_param_updated[param.name] = param.numpy()
291

292 293 294 295
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

296
        with new_program_scope():
L
Leo Chen 已提交
297 298
            paddle.manual_seed(seed)
            paddle.framework.random._manual_program_seed(seed)
299 300 301 302 303
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
304 305
                init_scale=init_scale,
                is_sparse=is_sparse)
306

307 308
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
309
            sgd = SGDOptimizer(learning_rate=1e-3)
310
            x = fluid.layers.data(
311
                name="x", shape=[-1, num_steps], dtype='int64')
312 313 314 315 316 317 318 319 320 321 322 323
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
324
            for param in ptb_model.parameters():
325 326 327 328 329 330
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
331 332 333
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
334
            for i in range(batch_num):
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
354 355
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
356

357 358 359 360 361
                if i == batch_num - 1:
                    for k in range(3, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    3]] = out[k]

362
        self.assertTrue(np.array_equal(static_loss_value, dy_loss_value))
363
        self.assertTrue(
364
            np.array_equal(static_last_cell_value, dy_last_cell_value))
365
        self.assertTrue(
366
            np.array_equal(static_last_hidden_value, dy_last_hidden_value))
367
        for key, value in six.iteritems(static_param_init):
368
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
369
        for key, value in six.iteritems(static_param_updated):
370
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
J
JiabinYang 已提交
371 372 373 374


if __name__ == '__main__':
    unittest.main()