test_imperative_ptb_rnn.py 15.7 KB
Newer Older
J
JiabinYang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle.fluid as fluid
19
import paddle.fluid.core as core
L
lujun 已提交
20
from paddle.fluid.dygraph.nn import Embedding
J
JiabinYang 已提交
21 22
import paddle.fluid.framework as framework
from paddle.fluid.optimizer import SGDOptimizer
L
lujun 已提交
23
from paddle.fluid.dygraph.base import to_variable
24
from paddle.fluid.dygraph import TracedLayer
25
from test_imperative_base import new_program_scope
J
JiabinYang 已提交
26
import numpy as np
27
import six
28
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
J
JiabinYang 已提交
29 30


31
class SimpleLSTMRNN(fluid.Layer):
J
JiabinYang 已提交
32 33 34 35 36 37
    def __init__(self,
                 hidden_size,
                 num_steps,
                 num_layers=2,
                 init_scale=0.1,
                 dropout=None):
38
        super(SimpleLSTMRNN, self).__init__()
J
JiabinYang 已提交
39 40 41 42
        self._hidden_size = hidden_size
        self._num_layers = num_layers
        self._init_scale = init_scale
        self._dropout = dropout
43 44
        self._input = None
        self._num_steps = num_steps
45 46
        self.cell_array = []
        self.hidden_array = []
47
        self._create_parameter()
J
JiabinYang 已提交
48

49
    def _create_parameter(self):
J
JiabinYang 已提交
50 51 52 53 54 55
        self.weight_1_arr = []
        self.weight_2_arr = []
        self.bias_arr = []
        self.mask_array = []

        for i in range(self._num_layers):
56
            weight_1 = self.create_parameter(
57 58 59
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
J
JiabinYang 已提交
60 61 62 63
                shape=[self._hidden_size * 2, self._hidden_size * 4],
                dtype="float32",
                default_initializer=fluid.initializer.UniformInitializer(
                    low=-self._init_scale, high=self._init_scale))
64
            self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1))
65
            bias_1 = self.create_parameter(
66 67 68 69
                attr=fluid.ParamAttr(
                    initializer=fluid.initializer.UniformInitializer(
                        low=-self._init_scale, high=self._init_scale)),
                shape=[self._hidden_size * 4],
J
JiabinYang 已提交
70 71
                dtype="float32",
                default_initializer=fluid.initializer.Constant(0.0))
72
            self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1))
J
JiabinYang 已提交
73

74 75 76 77 78
    def forward(self, input_embedding, init_hidden=None, init_cell=None):
        self.cell_array = []
        self.hidden_array = []

        for i in range(self._num_layers):
J
JiabinYang 已提交
79 80 81 82 83 84 85 86 87 88 89 90
            pre_hidden = fluid.layers.slice(
                init_hidden, axes=[0], starts=[i], ends=[i + 1])
            pre_cell = fluid.layers.slice(
                init_cell, axes=[0], starts=[i], ends=[i + 1])
            pre_hidden = fluid.layers.reshape(
                pre_hidden, shape=[-1, self._hidden_size])
            pre_cell = fluid.layers.reshape(
                pre_cell, shape=[-1, self._hidden_size])
            self.hidden_array.append(pre_hidden)
            self.cell_array.append(pre_cell)

        res = []
91 92
        for index in range(self._num_steps):
            self._input = fluid.layers.slice(
J
JiabinYang 已提交
93
                input_embedding, axes=[1], starts=[index], ends=[index + 1])
94 95
            self._input = fluid.layers.reshape(
                self._input, shape=[-1, self._hidden_size])
J
JiabinYang 已提交
96 97 98 99 100 101
            for k in range(self._num_layers):
                pre_hidden = self.hidden_array[k]
                pre_cell = self.cell_array[k]
                weight_1 = self.weight_1_arr[k]
                bias = self.bias_arr[k]

102
                nn = fluid.layers.concat([self._input, pre_hidden], 1)
J
JiabinYang 已提交
103 104 105
                gate_input = fluid.layers.matmul(x=nn, y=weight_1)

                gate_input = fluid.layers.elementwise_add(gate_input, bias)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                i, j, f, o = fluid.layers.split(
                    gate_input, num_or_sections=4, dim=-1)
                c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
                    i) * fluid.layers.tanh(j)
                m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
                self.hidden_array[k] = m
                self.cell_array[k] = c
                self._input = m

                if self._dropout is not None and self._dropout > 0.0:
                    self._input = fluid.layers.dropout(
                        self._input,
                        dropout_prob=self._dropout,
                        dropout_implementation='upscale_in_train')
            res.append(
                fluid.layers.reshape(
                    self._input, shape=[1, -1, self._hidden_size]))
        real_res = fluid.layers.concat(res, 0)
        real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
        last_hidden = fluid.layers.concat(self.hidden_array, 1)
        last_hidden = fluid.layers.reshape(
            last_hidden, shape=[-1, self._num_layers, self._hidden_size])
        last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
        last_cell = fluid.layers.concat(self.cell_array, 1)
        last_cell = fluid.layers.reshape(
            last_cell, shape=[-1, self._num_layers, self._hidden_size])
        last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
        return real_res, last_hidden, last_cell
J
JiabinYang 已提交
134 135


136
class PtbModel(fluid.Layer):
J
JiabinYang 已提交
137 138 139 140 141 142
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 num_layers=2,
                 num_steps=20,
                 init_scale=0.1,
143
                 is_sparse=False,
J
JiabinYang 已提交
144
                 dropout=None):
145
        super(PtbModel, self).__init__()
J
JiabinYang 已提交
146 147 148 149 150 151 152 153 154 155 156 157
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.init_scale = init_scale
        self.num_layers = num_layers
        self.num_steps = num_steps
        self.dropout = dropout
        self.simple_lstm_rnn = SimpleLSTMRNN(
            hidden_size,
            num_steps,
            num_layers=num_layers,
            init_scale=init_scale,
            dropout=dropout)
158
        self.embedding = Embedding(
J
JiabinYang 已提交
159 160
            size=[vocab_size, hidden_size],
            dtype='float32',
161
            is_sparse=is_sparse,
J
JiabinYang 已提交
162 163 164 165
            param_attr=fluid.ParamAttr(
                name='embedding_para',
                initializer=fluid.initializer.UniformInitializer(
                    low=-init_scale, high=init_scale)))
166
        self.softmax_weight = self.create_parameter(
167 168
            attr=fluid.ParamAttr(),
            shape=[self.hidden_size, self.vocab_size],
J
JiabinYang 已提交
169 170 171
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))
172
        self.softmax_bias = self.create_parameter(
173 174
            attr=fluid.ParamAttr(),
            shape=[self.vocab_size],
J
JiabinYang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            dtype="float32",
            default_initializer=fluid.initializer.UniformInitializer(
                low=-self.init_scale, high=self.init_scale))

    def forward(self, input, label, init_hidden, init_cell):
        init_h = fluid.layers.reshape(
            init_hidden, shape=[self.num_layers, -1, self.hidden_size])

        init_c = fluid.layers.reshape(
            init_cell, shape=[self.num_layers, -1, self.hidden_size])

        x_emb = self.embedding(input)
        x_emb = fluid.layers.reshape(
            x_emb, shape=[-1, self.num_steps, self.hidden_size])
        if self.dropout is not None and self.dropout > 0.0:
            x_emb = fluid.layers.dropout(
                x_emb,
                dropout_prob=self.drop_out,
                dropout_implementation='upscale_in_train')
        rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
                                                               init_c)
        rnn_out = fluid.layers.reshape(
            rnn_out, shape=[-1, self.num_steps, self.hidden_size])
198
        projection = fluid.layers.matmul(rnn_out, self.softmax_weight)
J
JiabinYang 已提交
199 200 201 202 203 204 205 206 207 208 209 210
        projection = fluid.layers.elementwise_add(projection, self.softmax_bias)
        projection = fluid.layers.reshape(
            projection, shape=[-1, self.vocab_size])
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=projection, label=label, soft_label=False)
        loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
        loss = fluid.layers.reduce_mean(loss, dim=[0])
        loss = fluid.layers.reduce_sum(loss)

        return loss, last_hidden, last_cell


L
lujun 已提交
211
class TestDygraphPtbRnn(unittest.TestCase):
212 213 214 215 216
    def test_ptb_rnn(self):
        for is_sparse in [True, False]:
            self.ptb_rnn_cpu_float32(is_sparse)

    def ptb_rnn_cpu_float32(self, is_sparse):
J
JiabinYang 已提交
217 218 219 220 221 222 223
        seed = 90
        hidden_size = 10
        vocab_size = 1000
        num_layers = 1
        num_steps = 3
        init_scale = 0.1
        batch_size = 4
224
        batch_num = 200
225 226
        traced_layer = None

L
lujun 已提交
227
        with fluid.dygraph.guard():
J
JiabinYang 已提交
228 229 230 231 232 233 234 235
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            # TODO: marsyang1993 Change seed to
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
236 237
                init_scale=init_scale,
                is_sparse=is_sparse)
J
JiabinYang 已提交
238

239 240
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=ptb_model.parameters())
241 242
            dy_param_updated = dict()
            dy_param_init = dict()
J
JiabinYang 已提交
243 244 245
            dy_loss = None
            last_hidden = None
            last_cell = None
246

247 248
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
249

250
            for i in range(batch_num):
J
JiabinYang 已提交
251 252 253 254 255 256 257 258 259 260 261
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                x = to_variable(x_data)
                y = to_variable(y_data)
                init_hidden = to_variable(init_hidden_data)
                init_cell = to_variable(init_cell_data)
262
                if i % 5 == 0:
263 264 265
                    outs, traced_layer = TracedLayer.trace(
                        ptb_model, [x, y, init_hidden, init_cell])
                    outs_static = traced_layer([x, y, init_hidden, init_cell])
266
                    helper.assertEachVar(outs, outs_static)
267 268 269 270 271 272 273 274

                    if program is not None:
                        self.assertTrue(
                            is_equal_program(traced_layer.program, program))

                    program = traced_layer.program

                    traced_layer.save_inference_model(
275
                        './infe_imperative_ptb_rnn', feed=list(range(4)))
276 277 278 279 280
                else:
                    outs = ptb_model(x, y, init_hidden, init_cell)

                dy_loss, last_hidden, last_cell = outs

J
JiabinYang 已提交
281
                if i == 0:
282
                    for param in ptb_model.parameters():
283
                        dy_param_init[param.name] = param.numpy()
L
lujun 已提交
284
                dy_loss.backward()
J
JiabinYang 已提交
285
                sgd.minimize(dy_loss)
286 287 288
                ptb_model.clear_gradients()
                if i == batch_num - 1:
                    for param in ptb_model.parameters():
289
                        dy_param_updated[param.name] = param.numpy()
290

291 292 293 294
            dy_loss_value = dy_loss.numpy()
            dy_last_cell_value = last_cell.numpy()
            dy_last_hidden_value = last_hidden.numpy()

295 296 297 298 299 300 301 302
        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            ptb_model = PtbModel(
                hidden_size=hidden_size,
                vocab_size=vocab_size,
                num_layers=num_layers,
                num_steps=num_steps,
303 304
                init_scale=init_scale,
                is_sparse=is_sparse)
305

306 307
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
308
            sgd = SGDOptimizer(learning_rate=1e-3)
309
            x = fluid.layers.data(
310
                name="x", shape=[-1, num_steps], dtype='int64')
311 312 313 314 315 316 317 318 319 320 321 322
            y = fluid.layers.data(name="y", shape=[-1, 1], dtype='float32')
            init_hidden = fluid.layers.data(
                name="init_hidden", shape=[1], dtype='float32')
            init_cell = fluid.layers.data(
                name="init_cell", shape=[1], dtype='float32')

            static_loss, static_last_hidden, static_last_cell = ptb_model(
                x, y, init_hidden, init_cell)
            sgd.minimize(static_loss)
            static_param_updated = dict()
            static_param_init = dict()
            static_param_name_list = list()
323
            for param in ptb_model.parameters():
324 325 326 327 328 329
                static_param_name_list.append(param.name)

            out = exe.run(framework.default_startup_program(),
                          fetch_list=static_param_name_list)
            for i in range(len(static_param_name_list)):
                static_param_init[static_param_name_list[i]] = out[i]
J
JiabinYang 已提交
330 331 332
            static_loss_value = None
            static_last_cell_value = None
            static_last_hidden_value = None
333
            for i in range(batch_num):
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                x_data = np.arange(12).reshape(4, 3).astype('int64')
                y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
                x_data = x_data.reshape((-1, num_steps, 1))
                y_data = y_data.reshape((-1, 1))
                init_hidden_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                init_cell_data = np.zeros(
                    (num_layers, batch_size, hidden_size), dtype='float32')
                fetch_list = [static_loss, static_last_hidden, static_last_cell]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "y": y_data,
                                  "init_hidden": init_hidden_data,
                                  "init_cell": init_cell_data
                              },
                              fetch_list=fetch_list)
                static_loss_value = out[0]
353 354
                static_last_hidden_value = out[1]
                static_last_cell_value = out[2]
J
JiabinYang 已提交
355

356 357 358 359 360
                if i == batch_num - 1:
                    for k in range(3, len(out)):
                        static_param_updated[static_param_name_list[k -
                                                                    3]] = out[k]

361
        self.assertTrue(np.array_equal(static_loss_value, dy_loss_value))
362
        self.assertTrue(
363
            np.array_equal(static_last_cell_value, dy_last_cell_value))
364
        self.assertTrue(
365
            np.array_equal(static_last_hidden_value, dy_last_hidden_value))
366
        for key, value in six.iteritems(static_param_init):
367
            self.assertTrue(np.array_equal(value, dy_param_init[key]))
368
        for key, value in six.iteritems(static_param_updated):
369
            self.assertTrue(np.array_equal(value, dy_param_updated[key]))
J
JiabinYang 已提交
370 371 372 373


if __name__ == '__main__':
    unittest.main()