jit.py 14.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
__all__ = ['TracedLayer', 'dygraph_to_static_output', 'dygraph_to_static_graph']
18

19
import warnings
20 21

from ..wrapped_decorator import wrap_decorator
22
from .base import program_desc_tracing_guard, switch_to_static_graph
23
from .dygraph_to_static import AutoTracer, convert_to_static
24
from .layers import Layer
25 26 27 28
from paddle.fluid import core
from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode
from paddle.fluid.executor import Executor, scope_guard
from paddle.fluid.compiler import CompiledProgram
29 30 31 32 33 34 35 36 37 38 39 40


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
41
        result_list.append(inputs)
42 43 44 45 46 47 48 49 50 51 52 53

    if isinstance(inputs, (list, tuple)):
        for var in inputs:
            _extract_vars(var, result_list)


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


54 55 56 57 58 59 60
def _dygraph_to_static_graph_(dygraph_func):
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
                "The decorator 'dygraph_to_static_graph' doesn't work in dygraph mode."
                " Please use it in static mode.")
            return dygraph_func(*args, **kwargs)
61
        static_func, ast_transformer = convert_to_static(dygraph_func)
62 63 64 65 66
        return static_func(*args, **kwargs)

    return __impl__


67 68 69
dygraph_to_static_graph = wrap_decorator(_dygraph_to_static_graph_)


70
def _dygraph_to_static_output_(dygraph_func):
71 72 73 74
    # Singleton object to cache main_program to avoid inserting ops repeatedly.
    # TODO: Need a better class name
    auto_tracer = AutoTracer()

75 76 77 78 79 80 81
    def __impl__(*args, **kwargs):
        if in_dygraph_mode():
            warnings.warn(
                "The decorator 'dygraph_to_static_output' doesn't work in dygraph mode."
                " Please use it in static mode.")
            return dygraph_func(*args, **kwargs)

82 83
        cached_program = auto_tracer.get_cached_program()
        outputs = cached_program(dygraph_func, *args, **kwargs)
84

85 86 87
        # Run program to fetch output Tensors once building successfully.
        if not cached_program.in_build_process:
            outputs = auto_tracer.run(*args, **kwargs)
88

89
        return outputs
90

91
    return __impl__
92 93


94 95 96
dygraph_to_static_output = wrap_decorator(_dygraph_to_static_output_)


97
@dygraph_only
Z
Zeng Jinle 已提交
98 99 100 101 102
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
103
    assert isinstance(layer, Layer)
104 105 106 107 108 109 110 111 112

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
113
        original_outputs = layer(*inputs)
114 115 116 117
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
118
        out_vars = [var for var in outputs]
119

120
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
121
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
122 123 124 125 126
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

127
    return original_outputs, program, feed_names, fetch_names, parameters
128 129 130 131


class TracedLayer(object):
    """
132 133 134 135 136
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
137 138 139 140

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
141 142

    All TracedLayer objects should not be created by constructor and should
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
159
            src_tensor = p.value().get_tensor()
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
183
        This method is the only allowed method to create TracedLayer object.
184 185 186 187
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
188 189
            layer (dygraph.Layer): the layer object to be traced.
            inputs (list(Variable)): the input variables of the layer object.
190 191

        Returns:
192
            tuple: A tuple of 2 items, whose the first item is the output of
193
            :code:`layer(*inputs)` , and the second item is the created
194
            TracedLayer object.
195

196
        Examples:
197 198 199
            .. code-block:: python:

                import paddle.fluid as fluid
200
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
201 202 203
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
204 205 206
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
207 208 209 210 211

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
212
                    layer = ExampleLayer()
213 214 215
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
216 217 218 219 220 221 222 223 224

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
225
        """
226 227
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
228 229 230 231 232 233 234
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
235
            build_strategy (BuildStrategy, optional): build strategy of
236 237 238 239 240 241 242 243 244 245 246
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
247
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
248 249 250
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
251 252 253
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
254 255 256 257 258

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
259
                    layer = ExampleLayer()
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
293
                feed_dict[name] = x.value().get_tensor()
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
316 317
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
318 319

        Args:
320
            dirname (str): the directory to save the inference model.
321
            feed (list[int], optional): the input variable indices of the saved
322
                inference model. If None, all input variables of the
323 324 325 326 327 328 329 330
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
331
            None
332 333 334 335 336

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
337
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
338 339 340
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
341 342 343
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
344 345 346 347

                    def forward(self, input):
                        return self._fc(input)

348 349 350
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

351
                with fluid.dygraph.guard():
352
                    layer = ExampleLayer()
353 354
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
355
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
356 357

                place = fluid.CPUPlace()
358 359
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
360
                                                    exe)
361 362 363

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
364
        """
365
        from paddle.fluid.io import save_inference_model
366 367 368 369 370

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

371
            return [all_vars[idx] for idx in partial_vars]
372 373 374 375 376 377 378 379 380 381

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

382
            save_inference_model(
383 384 385 386 387
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())