MKLDNNLayer.h 15.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36 37 38
protected:
  // batch size
  int bs_;
39
  // their sizes are always from the first input layer
T
tensor-tang 已提交
40 41 42 43 44
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

45 46
  // the condition that forward need be reset
  size_t condition_;
T
tensor-tang 已提交
47 48 49
  // backward also need reset after reset forward handle
  bool needResetBwd_;

50 51 52
  // is output only mkldnn
  bool outputOnlyMKLDNN_;

T
tensor-tang 已提交
53 54
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
55
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
56
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
57 58
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
59 60 61
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70
  /* Value and grad are seperated as internal and external buffers.
   * Each MKLDNNLayer must init or reset internal buffer at least,
   * and the external buffer format is always nchw of nc(when h==w==1),
   * which is the same format as paddle.
   * The output_.value and output_.grad always save the external data,
   * when mixed with cpu device.
   * When all layers are mkldnn layers, they could save internal data.
   */
  // below MKLDNNMatrix buffers are all internal buffers
71
  std::vector<MKLDNNMatrixPtr> inVals_;
72
  std::vector<MKLDNNMatrixPtr> inGrads_;
T
tensor-tang 已提交
73
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
74
  MKLDNNMatrixPtr outGrad_;
75
  // below are external value and grad
76
  std::vector<MKLDNNMatrixPtr> extInVals_;
77
  std::vector<MKLDNNMatrixPtr> extInGrads_;
78 79 80
  MKLDNNMatrixPtr extOutVal_;
  MKLDNNMatrixPtr extOutGrad_;
  // convert handle between external and internal buffers
81
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInVals_;
82
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInGrads_;
83 84 85 86
  std::shared_ptr<mkldnn::reorder> cvtOutVal_;
  std::shared_ptr<mkldnn::reorder> cvtOutGrad_;

  // weight and bias are always internal buffers
T
tensor-tang 已提交
87
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
88
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
89
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
90
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92 93
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
94
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
95 96 97
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;

T
tensor-tang 已提交
98
public:
99
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
100
      : Layer(config),
T
tensor-tang 已提交
101 102
        ih_(0),
        iw_(0),
103
        condition_(0),
T
tensor-tang 已提交
104
        needResetBwd_(true),
105
        outputOnlyMKLDNN_(false),
T
tensor-tang 已提交
106
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
107 108 109 110
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
111

112
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
113

T
tensor-tang 已提交
114
  virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
T
tensor-tang 已提交
115 116
  virtual void forward(PassType passType);
  virtual void backward(const UpdateCallback& callback);
117 118

  /**
119 120
   * reshape the input and output channels and image sizes
   * and reset output buffer size
121
   */
122
  virtual void reshape(
123
      int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) = 0;
124 125

  /**
126
   * reset the mkldnn forward primitve and memories
127
   * only would be called when input size changes
128
   * weight and bias buffers should be coverd by child class itself
129
   */
130
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
131
                        std::vector<MKLDNNMatrixPtr>& inputs,
132
                        MKLDNNMatrixPtr& out) = 0;
133 134

  /**
135
   * reset the mkldnn backward primitve and memories
136
   * only would be called when needed
137
   * weight and bias buffers should be coverd by child class itself
138
   */
139
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
140
                        std::vector<MKLDNNMatrixPtr>& inputs,
141
                        MKLDNNMatrixPtr& out) = 0;
142 143 144 145 146 147

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
148 149 150 151
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
152
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
153 154 155 156 157

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
158
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
159

160
  /**
161
   * add this interface as public for unit test
162
   */
163 164 165
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
166 167 168 169 170 171 172 173 174
  /**
   * Some layers may have different condition to reset the forward.
   * The function returns the condition that do not need reset forward.
   */
  inline virtual size_t keepCondition() {
    // reset when the first input element size changed, not only the batchsize
    return inputLayers_[0]->getOutputValue()->getElementCnt();
  }

175 176 177
  /**
   * reshape the input image sizes and input batchsize
   */
178
  void reshapeInput(int& batchsize, int& height, int& width, size_t idx = 0);
179 180 181 182

  /**
   * reshape output image sizes
   */
T
tensor-tang 已提交
183
  void reshapeOutput(size_t height, size_t width);
184

T
tensor-tang 已提交
185
  /**
186 187 188 189 190
   * reset MKLDNNMatrix from Matrix and internal primitive desc.
   * reset nullptr if matrix or primitive desc is empty
   */
  void resetWithMatrix(MKLDNNMatrixPtr& dnn,
                       const MatrixPtr& mat,
T
tensor-tang 已提交
191
                       mkldnn::memory::primitive_desc pd);
192 193 194 195

  /**
   * reset input value from input MKLDNNMatrix and internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
196
   * input channel may be different in concat.
197 198 199
   */
  void resetInValue(
      MKLDNNMatrixPtr& in,
200
      const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr,
201
      size_t idx = 0,
202
      int inputChannel = 0);
203 204 205 206 207 208

  /**
   * reset output value from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
  void resetOutValue(MKLDNNMatrixPtr& out,
T
tensor-tang 已提交
209
                     mkldnn::memory::primitive_desc intPD);
210 211 212 213 214

  /**
   * reset input grad from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
215 216
  void resetInGrad(MKLDNNMatrixPtr& in,
                   mkldnn::memory::primitive_desc intPD,
217
                   size_t idx = 0);
218 219 220 221 222

  /**
   * reset output grad from internal primitive desc.
   * merge grad if necessary.
   * reset both internal and external buffer and create reorder if necessary.
T
tensor-tang 已提交
223
   * note: about merge grad, when this layer has several outputs,
T
tensor-tang 已提交
224 225
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
226
   */
T
tensor-tang 已提交
227
  void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD);
228 229 230

  /**
   * reset the merge grad primitive if necessary.
T
tensor-tang 已提交
231
   * note: do not support the grads mixed with cpu device,
232 233
   *       since it can not get memory desc from cpu device.
   */
T
tensor-tang 已提交
234 235 236 237 238 239 240
  void resetMergeGrad(MKLDNNMatrixPtr& out);

protected:
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }
241

T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250 251
  /**
   * check the format is nchw or nc,
   * which is supported by Paddle default memory layout
   */
  bool isPaddleFormat(mkldnn::memory::format fmt) {
    if (fmt == mkldnn::memory::format::nchw ||
        fmt == mkldnn::memory::format::nc) {
      return true;
    } else {
      return false;
252
    }
T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265
  }

  /**
   * If input only has MKLDNN device.
   * Otherwise, only support the previous layer using CPU device.
   */
  bool inputIsOnlyMKLDNN(int index = 0) {
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
266
    }
T
tensor-tang 已提交
267
  }
268

T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
  bool outputIsOnlyMKLDNN() {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
    return outputOnlyMKLDNN_;
T
tensor-tang 已提交
280 281
  }

T
tensor-tang 已提交
282 283 284 285 286 287 288 289
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
290

291
  /**
292
   * print the mkldnn memory format of value
293
   */
294
  virtual void printValueFormat() {
295 296 297 298 299 300 301 302
    for (size_t i = 0; i < inVals_.size(); ++i) {
      if (!inVals_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInVals_[i] ? extInVals_[i]->getFormat()
                                                  : inVals_[i]->getFormat())
                        << " >>> " << inVals_[i]->getFormat() << " >>>";
303 304
    }
    if (outVal_) {
305 306 307
      VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "
                        << (extOutVal_ ? extOutVal_->getFormat()
                                       : outVal_->getFormat());
308 309 310 311 312 313
    }
    if (wgtVal_) {
      VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
    }
    if (biasVal_) {
      VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat();
314
    }
T
tensor-tang 已提交
315
  }
T
tensor-tang 已提交
316

317
  /**
318
   * print the mkldnn memory format of grad
319
   */
320 321
  virtual void printGradFormat() {
    if (outGrad_) {
322 323 324
      VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "
                        << (extOutGrad_ ? extOutGrad_->getFormat()
                                        : outGrad_->getFormat());
T
tensor-tang 已提交
325
    }
326 327 328 329 330 331 332 333
    for (size_t i = 0; i < inGrads_.size(); ++i) {
      if (!inGrads_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInGrads_[i] ? extInGrads_[i]->getFormat()
                                                   : inGrads_[i]->getFormat())
                        << " <<< " << inGrads_[i]->getFormat() << " <<<";
334 335 336 337 338 339
    }
    if (wgtGrad_) {
      VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat();
    }
    if (biasGrad_) {
      VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat();
340
    }
T
tensor-tang 已提交
341 342
  }

343
private:
344 345 346 347
  /**
   * clear all grad
   */
  void clearGrads() {
T
tensor-tang 已提交
348 349 350
    if (output_.grad) {
      output_.grad->zeroMem();
    }
351
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
T
tensor-tang 已提交
352 353 354
      if (outputOtherDevice_[i].grad) {
        outputOtherDevice_[i].grad->zeroMem();
      }
355 356 357
    }
  }

T
tensor-tang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
380
  }
381

T
tensor-tang 已提交
382 383 384 385 386 387 388 389 390 391
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

392 393 394 395 396 397 398 399 400 401 402 403 404
  /**
   * if have cpu device, share value and grad data with output_
   */
  void shareCPUDevice() {
    if (outputIsOnlyMKLDNN()) {
      return;
    }
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].value = output_.value;
      outputOtherDevice_[i].grad = output_.grad;
    }
  }

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

  void prepareValueConversions(std::vector<mkldnn::primitive>& pipeline) {
    // MKLDNNLayer output value should be MKLDNNMatrix
    // so external output value is necessary.
    // Then external input value is not necessary,
    // since input may be mkldnn internal buffer.
    CHECK(extOutVal_) << "external output value is necessary";
    output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
    CHECK(inVals_[0] && outVal_) << "internal memories are necessary";
    for (size_t i = 0; i < cvtInVals_.size(); ++i) {
      if (cvtInVals_[i]) {
        pipeline.insert(pipeline.begin(), *cvtInVals_[i]);
      }
    }
    if (cvtOutVal_) {
      pipeline.push_back(*cvtOutVal_);
    }
  }
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  void prepareGradConversions(std::vector<mkldnn::primitive>& pipeline) {
    // external output grad is not necessary
    // since output may be mkldnn internal buffer or merge them directly.
    CHECK(outGrad_) << "internal output grad is necessary";
    if (extOutGrad_) {
      CHECK_EQ(extOutGrad_->getData(), output_.grad->getData())
          << "the external buffer should share the same data with output_.grad";
    }
    if (cvtOutGrad_) {
      pipeline.insert(pipeline.begin(), *cvtOutGrad_);
    }
    for (size_t i = 0; i < cvtInGrads_.size(); ++i) {
      if (cvtInGrads_[i]) {
        pipeline.push_back(*cvtInGrads_[i]);
      }
    }
  }
T
tensor-tang 已提交
475 476 477
};

}  // namespace paddle