MKLDNNLayer.h 14.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40 41 42 43 44 45
  // batch size
  int bs_;
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
46 47 48
  // backward also need reset after reset forward handle
  bool needResetBwd_;

49 50 51
  // is output only mkldnn
  bool outputOnlyMKLDNN_;

T
tensor-tang 已提交
52 53
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
54
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
55
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
56 57
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
58 59 60
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

61
  // MKLDNNMatrixPtr with internal format
T
tensor-tang 已提交
62
  MKLDNNMatrixPtr inVal_;
T
tensor-tang 已提交
63
  MKLDNNMatrixPtr inGrad_;
T
tensor-tang 已提交
64
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
65
  MKLDNNMatrixPtr outGrad_;
T
tensor-tang 已提交
66
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
67
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
68
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
69
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
70

T
tensor-tang 已提交
71 72
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
73
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
74 75
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;
76 77 78 79 80
  // since mkldnn sum do not support different formats:
  // can refer to https://github.com/01org/mkl-dnn/issues/134
  // so need create reorder manually and save tmp MKLDNNMatrix
  MKLDNNMatrixPtr tmpOutGrad_;
  std::shared_ptr<mkldnn::primitive> tmpCvt_;
T
tensor-tang 已提交
81

T
tensor-tang 已提交
82
public:
83
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
84
      : Layer(config),
85
        inputElemenCnt_(0),
T
tensor-tang 已提交
86 87 88 89 90 91 92
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
93
        needResetBwd_(true),
T
tensor-tang 已提交
94
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
95 96 97 98
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
99

100
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
101

T
tensor-tang 已提交
102 103
  virtual bool init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
T
tensor-tang 已提交
104 105 106
    CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
                            << "Please set WITH_MKLDNN=ON "
                            << "and set use_mkldnn=True";
T
refine  
tensor-tang 已提交
107
    CHECK(!useGpu_) << "Do not support GPU yet";
T
tensor-tang 已提交
108 109 110 111 112

    // set device id before Layer::init
    setDevice(MKLDNN_DEVICE);
    // change param device to MKLDNN device
    setParamsDevice(MKLDNN_DEVICE, parameterMap);
T
tensor-tang 已提交
113 114 115
    if (!Layer::init(layerMap, parameterMap)) {
      return false;
    }
T
tensor-tang 已提交
116
    setOutputMap();
117
    checkCPUOutputsNumber();
T
tensor-tang 已提交
118

119 120
    stream_.reset(new MKLDNNStream());
    engine_ = CPUEngine::Instance().getEngine();
T
tensor-tang 已提交
121 122
    return true;
  }
T
tensor-tang 已提交
123

124 125 126 127 128 129
  void forward(PassType passType) override {
    passType_ = passType;

    {
      REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
      CHECK(!inputLayers_.empty());
130
      copySeqInfoToOutputs();
131 132
      size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt();
      if (inputElemenCnt_ != elemenCnt) {
T
tensor-tang 已提交
133
        VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
134
        // reset when input total sizes changed, not only the batchsize
135
        inputElemenCnt_ = elemenCnt;
T
tensor-tang 已提交
136
        pipelineFwd_.clear();
137 138
        reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
        resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
139 140 141 142 143 144 145 146
        convertWeightsFromPaddle();
        needResetBwd_ = true;
      }

      if (inputLayers_[0]->getType() == "data") {
        updateInputData();
      }

147 148 149
      if (!outputOnlyMKLDNN_) {
        clearGrads();
      }
150 151 152 153 154 155 156 157 158 159
      stream_->submit(pipelineFwd_);
    }

    /* activation */ {
      REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
      forwardActivation();
    }
  }

  void backward(const UpdateCallback& callback) override {
T
tensor-tang 已提交
160
    if (needResetBwd_) {
T
tensor-tang 已提交
161
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
T
tensor-tang 已提交
162
      pipelineBwd_.clear();
163 164
      pipelineMergeGrad_.clear();
      mergeGrad_ = nullptr;
T
tensor-tang 已提交
165 166 167
      resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
      needResetBwd_ = false;
    }
168 169 170 171 172 173

    // merge grad must before backward activation
    if (mergeGrad_) {
      REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
      stream_->submit(pipelineMergeGrad_);
    }
T
tensor-tang 已提交
174
    {
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
      REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
      backwardActivation();
    }
    {
      REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
      stream_->submit(pipelineBwd_);
    }

    {
      REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
      updateWeights(callback);
    }
  }

  /**
   * reshape the input image sizes
   * and reset output image and buffer size
192
   * output channel can not be changed
193
   */
194 195
  virtual void reshape(
      int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0;
196 197 198 199 200

  /**
   * reset the mkldnn forward primitve and memory
   * only would be called when input size changes
   */
201 202 203 204 205
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
206 207 208 209 210

  /**
   * reset the mkldnn backward primitve and memory for mkldnn fc
   * only would be called when needed
   */
211 212 213 214 215
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
216 217 218 219 220 221 222 223 224 225 226 227

  /**
   * Update input value data when input layer is "data" type.
   * Since the input value data address might be changed.
   */
  virtual void updateInputData() {}

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
228 229 230 231
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
232
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
233 234 235 236 237

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
238
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
239

240
  /**
241
   * add this interface as public for unit test
242
   */
243 244 245 246 247 248
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
249
  virtual void reshapeInput(int& batchsize, int& height, int& width) {
250
    const Argument& input = inputLayers_[0]->getOutput();
251 252 253 254 255
    batchsize = input.getBatchSize();
    int h = input.getFrameHeight();
    int w = input.getFrameWidth();
    if (h != 0) {
      height = h;
256
    }
257 258
    if (w != 0) {
      width = w;
259 260 261 262 263 264 265 266 267 268 269 270 271 272
    }
  }

  /**
   * reshape output image sizes
   */
  virtual void reshapeOutput(size_t height, size_t width) {
    output_.setFrameHeight(height);
    output_.setFrameWidth(width);
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].setFrameHeight(height);
      outputOtherDevice_[i].setFrameWidth(width);
    }
  }
273

T
tensor-tang 已提交
274 275 276
  /**
   * reset the output grad matrix from primitive desc.
   * and reset the merge grad primitive if needed.
T
tensor-tang 已提交
277 278 279
   * note: when this layer has serval outputs,
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
280 281 282
   */
  virtual void resetOutGrad(MKLDNNMatrixPtr& out,
                            mkldnn::memory::primitive_desc pd) {
283
    CHECK(outputIsOnlyMKLDNN()) << "do not support mixed with other device yet";
T
tensor-tang 已提交
284
    mergeGrad_ = nullptr;
285
    pipelineMergeGrad_.clear();
T
tensor-tang 已提交
286 287 288 289
    out = MKLDNNMatrix::create(output_.grad, pd);
    if (outputMap_.size() <= 1) {
      return;
    }
T
tensor-tang 已提交
290
    std::vector<double> scales(outputMap_.size(), 1.0);
T
tensor-tang 已提交
291 292 293 294 295
    std::vector<mkldnn::memory::primitive_desc> srcPDs;
    std::vector<mkldnn::primitive::at> srcs;
    for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
      MKLDNNMatrixPtr src =
          std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
296
      VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first;
T
tensor-tang 已提交
297 298 299 300 301 302 303 304 305 306
      CHECK(src) << "should be MKLDNNMatrix";
      auto srcDims = src->getDims();
      auto dstDims = out->getDims();
      CHECK_EQ(srcDims.size(), dstDims.size());
      for (size_t i = 0; i < srcDims.size(); ++i) {
        CHECK_EQ(srcDims[i], dstDims[i]);
      }
      srcPDs.push_back(src->getPrimitiveDesc());
      srcs.push_back(*src);
    }
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    // TODO(TJ): remove me when mkldnn sum support different formats
    for (size_t i = 1; i < srcPDs.size(); ++i) {
      CHECK(srcPDs[0] == srcPDs[i]);
    }
    tmpOutGrad_ = nullptr;
    tmpCvt_ = nullptr;
    if (out->getPrimitiveDesc() != srcPDs[0]) {
      tmpOutGrad_ = MKLDNNMatrix::create(nullptr, srcPDs[0]);
      tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
      CHECK(tmpCvt_);
      pipelineMergeGrad_.push_back(*tmpCvt_);
    } else {
      tmpOutGrad_ = out;
    }

    auto sumPD = mkldnn::sum::primitive_desc(
        tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
    mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_));
    pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
T
tensor-tang 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339
  }

  /**
   * reset input grad from primitive desc.
   * this function is avaiable for input is only mkldnn
   * or input do not care cpu device
   */
  virtual void resetInGrad(MKLDNNMatrixPtr& in,
                           mkldnn::memory::primitive_desc pd) {
    LayerPtr& input = inputLayers_[0];
    const MatrixPtr& grad =
        input->getOutputMapSize() > 1 ? nullptr : input->getOutput().grad;
    in = MKLDNNMatrix::create(grad, pd);
340
    Argument& arg = input->getOutput(this->getName());
T
tensor-tang 已提交
341 342 343
    arg.grad = std::dynamic_pointer_cast<Matrix>(in);
  }

T
tensor-tang 已提交
344 345 346 347 348 349 350 351
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
352

353 354 355 356 357
  /**
   * Print the mkldnn memory format flow of value
   */
  virtual void printValueFormatFlow() {
    if (inVal_ && outVal_) {
358 359
      VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> "
                        << outVal_->getFormat();
360
    }
T
tensor-tang 已提交
361
  }
T
tensor-tang 已提交
362

363 364 365 366 367
  /**
   * Print the mkldnn memory format flow of grad
   */
  virtual void printGradFormatFlow() {
    if (inGrad_ && outGrad_) {
368 369
      VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< "
                        << outGrad_->getFormat();
370
    }
T
tensor-tang 已提交
371 372 373
  }

protected:
374
  /**
T
rename  
tensor-tang 已提交
375
   * If input only has MKLDNN device.
T
refine  
tensor-tang 已提交
376
   * Otherwise, only support the previous layer using CPU device.
377
   */
T
rename  
tensor-tang 已提交
378
  bool inputIsOnlyMKLDNN(int index = 0) {
379 380 381 382 383 384 385 386 387 388
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      // do not support GPU yet
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
    }
  }

T
refine  
tensor-tang 已提交
389 390 391 392
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
T
rename  
tensor-tang 已提交
393
  bool outputIsOnlyMKLDNN() {
T
refine  
tensor-tang 已提交
394 395 396 397
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
398 399
    outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
    return outputOnlyMKLDNN_;
T
refine  
tensor-tang 已提交
400 401
  }

T
tensor-tang 已提交
402 403 404 405 406
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }

407
private:
408 409 410 411 412 413 414 415 416 417
  /**
   * clear all grad
   */
  void clearGrads() {
    output_.grad->zeroMem();
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].grad->zeroMem();
    }
  }

T
tensor-tang 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
440
  }
441

T
tensor-tang 已提交
442 443 444 445 446 447 448 449 450 451
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
T
tensor-tang 已提交
487 488 489
};

}  // namespace paddle