MKLDNNLayer.h 15.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40
  // batch size
  int bs_;
41
  // they sizes are always from the first input layer
T
tensor-tang 已提交
42 43 44 45 46
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
47 48 49
  // backward also need reset after reset forward handle
  bool needResetBwd_;

50 51 52
  // is output only mkldnn
  bool outputOnlyMKLDNN_;

T
tensor-tang 已提交
53 54
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
55
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
56
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
57 58
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
59 60 61
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70
  /* Value and grad are seperated as internal and external buffers.
   * Each MKLDNNLayer must init or reset internal buffer at least,
   * and the external buffer format is always nchw of nc(when h==w==1),
   * which is the same format as paddle.
   * The output_.value and output_.grad always save the external data,
   * when mixed with cpu device.
   * When all layers are mkldnn layers, they could save internal data.
   */
  // below MKLDNNMatrix buffers are all internal buffers
71
  std::vector<MKLDNNMatrixPtr> inVals_;
72
  std::vector<MKLDNNMatrixPtr> inGrads_;
T
tensor-tang 已提交
73
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
74
  MKLDNNMatrixPtr outGrad_;
75
  // below are external value and grad
76
  std::vector<MKLDNNMatrixPtr> extInVals_;
77
  std::vector<MKLDNNMatrixPtr> extInGrads_;
78 79 80
  MKLDNNMatrixPtr extOutVal_;
  MKLDNNMatrixPtr extOutGrad_;
  // convert handle between external and internal buffers
81
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInVals_;
82
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInGrads_;
83 84 85 86
  std::shared_ptr<mkldnn::reorder> cvtOutVal_;
  std::shared_ptr<mkldnn::reorder> cvtOutGrad_;

  // weight and bias are always internal buffers
T
tensor-tang 已提交
87
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
88
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
89
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
90
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92 93
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
94
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
95 96
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;
97 98 99 100 101
  // since mkldnn sum do not support different formats:
  // can refer to https://github.com/01org/mkl-dnn/issues/134
  // so need create reorder manually and save tmp MKLDNNMatrix
  MKLDNNMatrixPtr tmpOutGrad_;
  std::shared_ptr<mkldnn::primitive> tmpCvt_;
T
tensor-tang 已提交
102

T
tensor-tang 已提交
103
public:
104
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
105
      : Layer(config),
106
        inputElemenCnt_(0),
T
tensor-tang 已提交
107 108 109 110 111 112 113
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
114
        needResetBwd_(true),
115
        outputOnlyMKLDNN_(false),
T
tensor-tang 已提交
116
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
117 118 119 120
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
121

122
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
123

T
tensor-tang 已提交
124
  virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
T
tensor-tang 已提交
125 126
  virtual void forward(PassType passType);
  virtual void backward(const UpdateCallback& callback);
127 128

  /**
129 130
   * reshape the input and output channels and image sizes
   * and reset output buffer size
131
   */
132
  virtual void reshape(
133
      int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) = 0;
134 135

  /**
136
   * reset the mkldnn forward primitve and memories
137
   * only would be called when input size changes
138
   * weight and bias buffers should be coverd by child class itself
139
   */
140
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
141
                        std::vector<MKLDNNMatrixPtr>& inputs,
142
                        MKLDNNMatrixPtr& out) = 0;
143 144

  /**
145
   * reset the mkldnn backward primitve and memories
146
   * only would be called when needed
147
   * weight and bias buffers should be coverd by child class itself
148
   */
149
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
150
                        std::vector<MKLDNNMatrixPtr>& inputs,
151
                        MKLDNNMatrixPtr& out) = 0;
152 153 154 155 156 157

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
158 159 160 161
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
162
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
163 164 165 166 167

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
168
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
169

170
  /**
171
   * add this interface as public for unit test
172
   */
173 174 175 176 177 178
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
179
  void reshapeInput(int& batchsize, int& height, int& width, size_t idx = 0);
180 181 182 183

  /**
   * reshape output image sizes
   */
T
tensor-tang 已提交
184
  void reshapeOutput(size_t height, size_t width);
185

T
tensor-tang 已提交
186
  /**
187 188 189 190 191
   * reset MKLDNNMatrix from Matrix and internal primitive desc.
   * reset nullptr if matrix or primitive desc is empty
   */
  void resetWithMatrix(MKLDNNMatrixPtr& dnn,
                       const MatrixPtr& mat,
T
tensor-tang 已提交
192
                       mkldnn::memory::primitive_desc pd);
193 194 195 196

  /**
   * reset input value from input MKLDNNMatrix and internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
197
   * input channel may be different in concat.
198 199 200
   */
  void resetInValue(
      MKLDNNMatrixPtr& in,
201
      const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr,
202
      size_t idx = 0,
203
      int inputChannel = 0);
204 205 206 207 208 209

  /**
   * reset output value from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
  void resetOutValue(MKLDNNMatrixPtr& out,
T
tensor-tang 已提交
210
                     mkldnn::memory::primitive_desc intPD);
211 212 213 214 215

  /**
   * reset input grad from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
216 217
  void resetInGrad(MKLDNNMatrixPtr& in,
                   mkldnn::memory::primitive_desc intPD,
218
                   size_t idx = 0);
219 220 221 222 223

  /**
   * reset output grad from internal primitive desc.
   * merge grad if necessary.
   * reset both internal and external buffer and create reorder if necessary.
T
tensor-tang 已提交
224
   * note: about merge grad, when this layer has several outputs,
T
tensor-tang 已提交
225 226
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
227
   */
T
tensor-tang 已提交
228
  void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD);
229 230 231

  /**
   * reset the merge grad primitive if necessary.
T
tensor-tang 已提交
232
   * note: do not support the grads mixed with cpu device,
233 234
   *       since it can not get memory desc from cpu device.
   */
T
tensor-tang 已提交
235 236 237 238 239 240 241
  void resetMergeGrad(MKLDNNMatrixPtr& out);

protected:
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }
242

T
tensor-tang 已提交
243 244 245 246 247 248 249 250 251 252
  /**
   * check the format is nchw or nc,
   * which is supported by Paddle default memory layout
   */
  bool isPaddleFormat(mkldnn::memory::format fmt) {
    if (fmt == mkldnn::memory::format::nchw ||
        fmt == mkldnn::memory::format::nc) {
      return true;
    } else {
      return false;
253
    }
T
tensor-tang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266
  }

  /**
   * If input only has MKLDNN device.
   * Otherwise, only support the previous layer using CPU device.
   */
  bool inputIsOnlyMKLDNN(int index = 0) {
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
267
    }
T
tensor-tang 已提交
268
  }
269

T
tensor-tang 已提交
270 271 272 273 274 275 276 277 278 279 280
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
  bool outputIsOnlyMKLDNN() {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
    return outputOnlyMKLDNN_;
T
tensor-tang 已提交
281 282
  }

T
tensor-tang 已提交
283 284 285 286 287 288 289 290
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
291

292
  /**
293
   * print the mkldnn memory format of value
294
   */
295
  virtual void printValueFormat() {
296 297 298 299 300 301 302 303
    for (size_t i = 0; i < inVals_.size(); ++i) {
      if (!inVals_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInVals_[i] ? extInVals_[i]->getFormat()
                                                  : inVals_[i]->getFormat())
                        << " >>> " << inVals_[i]->getFormat() << " >>>";
304 305
    }
    if (outVal_) {
306 307 308
      VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "
                        << (extOutVal_ ? extOutVal_->getFormat()
                                       : outVal_->getFormat());
309 310 311 312 313 314
    }
    if (wgtVal_) {
      VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
    }
    if (biasVal_) {
      VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat();
315
    }
T
tensor-tang 已提交
316
  }
T
tensor-tang 已提交
317

318
  /**
319
   * print the mkldnn memory format of grad
320
   */
321 322
  virtual void printGradFormat() {
    if (outGrad_) {
323 324 325
      VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "
                        << (extOutGrad_ ? extOutGrad_->getFormat()
                                        : outGrad_->getFormat());
T
tensor-tang 已提交
326
    }
327 328 329 330 331 332 333 334
    for (size_t i = 0; i < inGrads_.size(); ++i) {
      if (!inGrads_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInGrads_[i] ? extInGrads_[i]->getFormat()
                                                   : inGrads_[i]->getFormat())
                        << " <<< " << inGrads_[i]->getFormat() << " <<<";
335 336 337 338 339 340
    }
    if (wgtGrad_) {
      VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat();
    }
    if (biasGrad_) {
      VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat();
341
    }
T
tensor-tang 已提交
342 343
  }

344
private:
345 346 347 348
  /**
   * clear all grad
   */
  void clearGrads() {
T
tensor-tang 已提交
349 350 351
    if (output_.grad) {
      output_.grad->zeroMem();
    }
352
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
T
tensor-tang 已提交
353 354 355
      if (outputOtherDevice_[i].grad) {
        outputOtherDevice_[i].grad->zeroMem();
      }
356 357 358
    }
  }

T
tensor-tang 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
381
  }
382

T
tensor-tang 已提交
383 384 385 386 387 388 389 390 391 392
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

393 394 395 396 397 398 399 400 401 402 403 404 405
  /**
   * if have cpu device, share value and grad data with output_
   */
  void shareCPUDevice() {
    if (outputIsOnlyMKLDNN()) {
      return;
    }
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].value = output_.value;
      outputOtherDevice_[i].grad = output_.grad;
    }
  }

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

  void prepareValueConversions(std::vector<mkldnn::primitive>& pipeline) {
    // MKLDNNLayer output value should be MKLDNNMatrix
    // so external output value is necessary.
    // Then external input value is not necessary,
    // since input may be mkldnn internal buffer.
    CHECK(extOutVal_) << "external output value is necessary";
    output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
    CHECK(inVals_[0] && outVal_) << "internal memories are necessary";
    for (size_t i = 0; i < cvtInVals_.size(); ++i) {
      if (cvtInVals_[i]) {
        pipeline.insert(pipeline.begin(), *cvtInVals_[i]);
      }
    }
    if (cvtOutVal_) {
      pipeline.push_back(*cvtOutVal_);
    }
  }
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  void prepareGradConversions(std::vector<mkldnn::primitive>& pipeline) {
    // external output grad is not necessary
    // since output may be mkldnn internal buffer or merge them directly.
    CHECK(outGrad_) << "internal output grad is necessary";
    if (extOutGrad_) {
      CHECK_EQ(extOutGrad_->getData(), output_.grad->getData())
          << "the external buffer should share the same data with output_.grad";
    }
    if (cvtOutGrad_) {
      pipeline.insert(pipeline.begin(), *cvtOutGrad_);
    }
    for (size_t i = 0; i < cvtInGrads_.size(); ++i) {
      if (cvtInGrads_[i]) {
        pipeline.push_back(*cvtInGrads_[i]);
      }
    }
  }
T
tensor-tang 已提交
476 477 478
};

}  // namespace paddle