MKLDNNLayer.h 13.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36
protected:
37 38
  // input value element count
  size_t inputElemenCnt_;
T
tensor-tang 已提交
39 40 41 42 43 44 45
  // batch size
  int bs_;
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

T
tensor-tang 已提交
46 47 48
  // backward also need reset after reset forward handle
  bool needResetBwd_;

49 50 51
  // is output only mkldnn
  bool outputOnlyMKLDNN_;

T
tensor-tang 已提交
52 53
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
54
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
55
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
56 57
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
58 59 60
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

T
tensor-tang 已提交
61 62 63 64 65 66 67 68 69
  /* Value and grad are seperated as internal and external buffers.
   * Each MKLDNNLayer must init or reset internal buffer at least,
   * and the external buffer format is always nchw of nc(when h==w==1),
   * which is the same format as paddle.
   * The output_.value and output_.grad always save the external data,
   * when mixed with cpu device.
   * When all layers are mkldnn layers, they could save internal data.
   */
  // below MKLDNNMatrix buffers are all internal buffers
T
tensor-tang 已提交
70
  MKLDNNMatrixPtr inVal_;
T
tensor-tang 已提交
71
  MKLDNNMatrixPtr inGrad_;
T
tensor-tang 已提交
72
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
73
  MKLDNNMatrixPtr outGrad_;
74 75 76 77 78 79 80 81 82 83 84 85
  // below are external value and grad
  MKLDNNMatrixPtr extInVal_;
  MKLDNNMatrixPtr extInGrad_;
  MKLDNNMatrixPtr extOutVal_;
  MKLDNNMatrixPtr extOutGrad_;
  // convert handle between external and internal buffers
  std::shared_ptr<mkldnn::reorder> cvtInVal_;
  std::shared_ptr<mkldnn::reorder> cvtInGrad_;
  std::shared_ptr<mkldnn::reorder> cvtOutVal_;
  std::shared_ptr<mkldnn::reorder> cvtOutGrad_;

  // weight and bias are always internal buffers
T
tensor-tang 已提交
86
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
87
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
88
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
89
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
90

T
tensor-tang 已提交
91 92
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
93
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
94 95
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;
96 97 98 99 100
  // since mkldnn sum do not support different formats:
  // can refer to https://github.com/01org/mkl-dnn/issues/134
  // so need create reorder manually and save tmp MKLDNNMatrix
  MKLDNNMatrixPtr tmpOutGrad_;
  std::shared_ptr<mkldnn::primitive> tmpCvt_;
T
tensor-tang 已提交
101

T
tensor-tang 已提交
102
public:
103
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
104
      : Layer(config),
105
        inputElemenCnt_(0),
T
tensor-tang 已提交
106 107 108 109 110 111 112
        bs_(0),
        ic_(0),
        ih_(0),
        iw_(0),
        oc_(0),
        oh_(0),
        ow_(0),
T
tensor-tang 已提交
113
        needResetBwd_(true),
114
        outputOnlyMKLDNN_(false),
T
tensor-tang 已提交
115
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
116 117 118 119
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
120

121
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
122

T
tensor-tang 已提交
123
  virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
T
tensor-tang 已提交
124 125
  virtual void forward(PassType passType);
  virtual void backward(const UpdateCallback& callback);
126 127

  /**
128 129
   * reshape the input and output channels and image sizes
   * and reset output buffer size
130
   */
131
  virtual void reshape(
132
      int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) = 0;
133 134

  /**
135
   * reset the mkldnn forward primitve and memories
136 137
   * only would be called when input size changes
   */
138 139 140 141 142
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
143 144

  /**
145
   * reset the mkldnn backward primitve and memories
146 147
   * only would be called when needed
   */
148 149 150 151 152
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
                        MKLDNNMatrixPtr& in,
                        MKLDNNMatrixPtr& wgt,
                        MKLDNNMatrixPtr& bias,
                        MKLDNNMatrixPtr& out) = 0;
153 154 155 156 157 158

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
159 160 161 162
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
163
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
164 165 166 167 168

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
169
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
170

171
  /**
172
   * add this interface as public for unit test
173
   */
174 175 176 177 178 179
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
  /**
   * reshape the input image sizes and input batchsize
   */
180 181 182 183
  void reshapeInput(int& batchsize,
                    int& height,
                    int& width,
                    size_t inputIdx = 0);
184 185 186 187

  /**
   * reshape output image sizes
   */
T
tensor-tang 已提交
188
  void reshapeOutput(size_t height, size_t width);
189

T
tensor-tang 已提交
190
  /**
191 192 193 194 195
   * reset MKLDNNMatrix from Matrix and internal primitive desc.
   * reset nullptr if matrix or primitive desc is empty
   */
  void resetWithMatrix(MKLDNNMatrixPtr& dnn,
                       const MatrixPtr& mat,
T
tensor-tang 已提交
196
                       mkldnn::memory::primitive_desc pd);
197 198 199 200 201 202 203

  /**
   * reset input value from input MKLDNNMatrix and internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
  void resetInValue(
      MKLDNNMatrixPtr& in,
204 205
      const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr,
      size_t inputIdx = 0);
206 207 208 209 210 211

  /**
   * reset output value from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
  void resetOutValue(MKLDNNMatrixPtr& out,
T
tensor-tang 已提交
212
                     mkldnn::memory::primitive_desc intPD);
213 214 215 216 217

  /**
   * reset input grad from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
218 219 220
  void resetInGrad(MKLDNNMatrixPtr& in,
                   mkldnn::memory::primitive_desc intPD,
                   size_t inputIdx = 0);
221 222 223 224 225

  /**
   * reset output grad from internal primitive desc.
   * merge grad if necessary.
   * reset both internal and external buffer and create reorder if necessary.
T
tensor-tang 已提交
226
   * note: about merge grad, when this layer has several outputs,
T
tensor-tang 已提交
227 228
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
229
   */
T
tensor-tang 已提交
230
  void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD);
231 232 233

  /**
   * reset the merge grad primitive if necessary.
T
tensor-tang 已提交
234
   * note: do not support the grads mixed with cpu device,
235 236
   *       since it can not get memory desc from cpu device.
   */
T
tensor-tang 已提交
237 238 239 240 241 242 243
  void resetMergeGrad(MKLDNNMatrixPtr& out);

protected:
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }
244

T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254
  /**
   * check the format is nchw or nc,
   * which is supported by Paddle default memory layout
   */
  bool isPaddleFormat(mkldnn::memory::format fmt) {
    if (fmt == mkldnn::memory::format::nchw ||
        fmt == mkldnn::memory::format::nc) {
      return true;
    } else {
      return false;
255
    }
T
tensor-tang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
  }

  /**
   * If input only has MKLDNN device.
   * Otherwise, only support the previous layer using CPU device.
   */
  bool inputIsOnlyMKLDNN(int index = 0) {
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
269
    }
T
tensor-tang 已提交
270
  }
271

T
tensor-tang 已提交
272 273 274 275 276 277 278 279 280 281 282
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
  bool outputIsOnlyMKLDNN() {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
    return outputOnlyMKLDNN_;
T
tensor-tang 已提交
283 284
  }

T
tensor-tang 已提交
285 286 287 288 289 290 291 292
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
293

294
  /**
295
   * print the mkldnn memory format of value
296
   */
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  virtual void printValueFormat() {
    if (extInVal_) {
      VLOG(MKLDNN_FMTS) << extInVal_->getFormat() << " >>> ";
    }
    if (inVal_) {
      VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>>";
    }
    if (outVal_) {
      VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> ";
    }
    if (extOutVal_) {
      VLOG(MKLDNN_FMTS) << extOutVal_->getFormat();
    }
    if (wgtVal_) {
      VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
    }
    if (biasVal_) {
      VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat();
315
    }
T
tensor-tang 已提交
316
  }
T
tensor-tang 已提交
317

318
  /**
319
   * print the mkldnn memory format of grad
320
   */
321
  virtual void printGradFormat() {
T
tensor-tang 已提交
322 323
    if (extOutGrad_) {
      VLOG(MKLDNN_FMTS) << extOutGrad_->getFormat();
324 325 326 327
    }
    if (outGrad_) {
      VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< ";
    }
T
tensor-tang 已提交
328 329 330 331 332
    if (inGrad_) {
      VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<<";
    }
    if (extInGrad_) {
      VLOG(MKLDNN_FMTS) << extInGrad_->getFormat() << " <<< ";
333 334 335 336 337 338
    }
    if (wgtGrad_) {
      VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat();
    }
    if (biasGrad_) {
      VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat();
339
    }
T
tensor-tang 已提交
340 341
  }

342
private:
343 344 345 346
  /**
   * clear all grad
   */
  void clearGrads() {
T
tensor-tang 已提交
347 348 349
    if (output_.grad) {
      output_.grad->zeroMem();
    }
350
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
T
tensor-tang 已提交
351 352 353
      if (outputOtherDevice_[i].grad) {
        outputOtherDevice_[i].grad->zeroMem();
      }
354 355 356
    }
  }

T
tensor-tang 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
379
  }
380

T
tensor-tang 已提交
381 382 383 384 385 386 387 388 389 390
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

391 392 393 394 395 396 397 398 399 400 401 402 403
  /**
   * if have cpu device, share value and grad data with output_
   */
  void shareCPUDevice() {
    if (outputIsOnlyMKLDNN()) {
      return;
    }
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].value = output_.value;
      outputOtherDevice_[i].grad = output_.grad;
    }
  }

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
T
tensor-tang 已提交
439 440 441
};

}  // namespace paddle