parameter_send.cc 12.2 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/distributed/parameter_send.h"
Q
Qiao Longfei 已提交
16
#include <memory>
17
#include <utility>
W
wanghuancoder 已提交
18 19
#include "glog/logging.h"
#include "paddle/fluid/framework/ddim.h"
Q
Qiao Longfei 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
W
wanghuancoder 已提交
22
#include "paddle/fluid/operators/distributed/communicator_common.h"
Q
Qiao Longfei 已提交
23
#include "paddle/fluid/operators/distributed/distributed.h"
W
wanghuancoder 已提交
24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/distributed/request_handler.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace framework {
class Scope;
class Tensor;
}  // namespace framework
}  // namespace paddle
Q
Qiao Longfei 已提交
35 36 37 38 39

namespace paddle {
namespace operators {
namespace distributed {

W
wanghuancoder 已提交
40 41
class RPCClient;

Q
Qiao Longfei 已提交
42 43 44 45 46
using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

47 48
typedef std::vector<std::pair<std::string, std::string>> EP_SPLIT_TABLE_PAIRS;

49 50 51
inline EP_SPLIT_TABLE_PAIRS GetMultiFieldCommContext(
    const CommContext &rpc_ctx, const framework::Scope &scope,
    int multi_parts) {
52 53 54 55
  EP_SPLIT_TABLE_PAIRS table_pairs;

  auto *send_var = scope.FindVar(rpc_ctx.var_name);
  if (send_var->IsType<framework::SelectedRows>()) {
56 57 58 59 60 61 62 63
    PADDLE_ENFORCE_GE(multi_parts, 1,
                      platform::errors::InvalidArgument(
                          "multi_parts must == 1 in parameter send, now is: %d",
                          multi_parts));

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      table_pairs.push_back(
          std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_varnames[i]));
64 65 66
    }

  } else {
67 68
    PADDLE_THROW(platform::errors::InvalidArgument(
        "GetMultiFieldCommContext unsupported LoDTensor current!"));
69 70 71 72 73
  }

  return table_pairs;
}  // namespace distributed

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
void SendByNotifyRPC(const CommContext &rpc_ctx,
                     const framework::Scope &scope) {
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto &send_var_name = rpc_ctx.var_name;
  std::vector<distributed::VarHandlePtr> rets;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  if (NeedSend(scope, send_var_name)) {
    for (size_t j = 0; j < rpc_ctx.epmap.size(); j++) {
      auto &endpoint = rpc_ctx.epmap[j];
      VLOG(4) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncDistributeNotify(endpoint, cpu_ctx, scope,
                                                       send_var_name));
      VLOG(4) << "send var " << send_var_name << " by notify RPC done";
    }
  } else {
    VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.var_name;
  }

  for (auto &handle : rets) {
    PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                              "internal error in RPCClient"));
  }
}

101
template <typename T>
102
void ParameterSend<T>::operator()(const CommContext &rpc_ctx,
103 104
                                  const framework::Scope &scope, bool sync,
                                  int multi_parts) {
105 106 107 108 109
  if (rpc_ctx.var_name == STEP_COUNTER) {
    SendByNotifyRPC(rpc_ctx, scope);
    return;
  }

110
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
111 112 113 114 115

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
116
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
117

118
  std::vector<distributed::VarHandlePtr> rets;
119
  auto *send_var = scope.FindVar(rpc_ctx.var_name);
120

Q
Qiao Longfei 已提交
121
  if (send_var->IsType<framework::LoDTensor>()) {
122
    size_t out_num = rpc_ctx.splited_varnames.size();
Q
Qiao Longfei 已提交
123 124 125 126 127
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
128

Q
Qiao Longfei 已提交
129
      // infer output shape
M
MRXLT 已提交
130 131 132 133
      PADDLE_ENFORCE_EQ(
          rpc_ctx.height_sections.size(), out_num,
          platform::errors::InvalidArgument("tensor split sections size"
                                            "should be equal to output size."));
Q
Qiao Longfei 已提交
134 135
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
136
        dim[0] = rpc_ctx.height_sections[i];
Q
Qiao Longfei 已提交
137 138 139
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
140 141
      // create output var in local scope
      size_t row_offset = 0;
142
      for (size_t i = 0; i < out_num; ++i) {
143
        framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[i])
Q
Qiao Longfei 已提交
144
                                     ->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
145 146 147
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
T
tangwei12 已提交
148 149
    } else {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
150
      framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[0])
T
tangwei12 已提交
151 152
                                   ->GetMutable<framework::LoDTensor>();
      out->ShareDataWith(send_tensor);
Q
Qiao Longfei 已提交
153
    }
154 155 156 157 158 159 160 161 162 163 164 165 166 167

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      auto &send_var_name = rpc_ctx.splited_varnames[i];
      auto &endpoint = rpc_ctx.epmap[i];
      VLOG(4) << " send var name: " << send_var_name
              << "endpoint: " << endpoint;
      if (NeedSend(*local_scope.get(), send_var_name)) {
        VLOG(3) << "sending " << send_var_name << " to " << endpoint;
        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(3) << "don't send non-initialized variable: "
                << rpc_ctx.splited_varnames[i];
168 169
      }
    }
170
  } else if (send_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
171
    auto &send_slr = send_var->Get<framework::SelectedRows>();
172

Q
Qiao Longfei 已提交
173
    auto &send_rows = send_slr.rows();
174
    if (send_rows.size() == 0) {
175 176 177 178 179
      LOG(WARNING)
          << "WARNING: The variable sent to pserver is empty, which "
             "may cause an unknown error. Please check the state of "
             "use_double_buffer in pyreader/dataloader async mode, you need to "
             "turn it false.";
180 181
    }

182 183
    std::vector<std::vector<size_t>> outs_rows_idx;
    std::vector<std::vector<size_t>> outs_dense_idx;
184

185
    auto table_pairs = GetMultiFieldCommContext(rpc_ctx, scope, 1);
186 187
    outs_rows_idx.resize(table_pairs.size());
    outs_dense_idx.resize(table_pairs.size());
188 189

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
Q
Qiao Longfei 已提交
190
    auto *src = send_slr.value().data<T>();
191

Q
Qiao Longfei 已提交
192
    // create output var in local scope
Q
Qiao Longfei 已提交
193
    std::vector<framework::SelectedRows *> outs;
194 195 196
    for (auto &table : table_pairs) {
      auto *out =
          local_scope->Var(table.second)->GetMutable<framework::SelectedRows>();
197 198 199
      outs.push_back(out);
    }

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    if (!rpc_ctx.is_distributed) {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto ep_idx = send_rows[i] % pserver_num;
        auto id = send_rows[i] / pserver_num;
        outs_rows_idx[ep_idx].push_back(id);
        outs_dense_idx[ep_idx].push_back(i);
      }

      auto place = platform::CPUPlace();

      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
            outs[out_idx]->mutable_rows()->push_back(idx);
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
            }
          }
        }
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
      }
    } else {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto out_idx = send_rows[i] % pserver_num;
        outs_rows_idx[out_idx].push_back(send_rows[i]);
        outs_dense_idx[out_idx].push_back(i);
      }
254

255
      auto place = platform::CPUPlace();
256

257 258
      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
259 260 261 262 263
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();

264
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
265 266 267 268 269
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
270
            outs[out_idx]->mutable_rows()->push_back(idx);
271 272 273 274 275 276 277 278 279
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
280 281
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
282
            }
283 284
          }
        }
285 286 287 288
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
289 290 291
      }
    }

292 293 294 295
    for (size_t i = 0; i < table_pairs.size(); i++) {
      auto &send_var_name = table_pairs[i].second;
      auto &endpoint = table_pairs[i].first;
      auto need_send = NeedSend(*local_scope.get(), send_var_name);
Q
Qiao Longfei 已提交
296

297
      VLOG(4) << "send var name: " << send_var_name
298 299
              << " send var endpoint: " << endpoint
              << " need send: " << need_send;
300 301 302 303 304 305 306 307 308

      if (need_send) {
        VLOG(4) << "sending " << send_var_name << " to " << endpoint;

        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(4) << "don't send non-initialized variable: "
309
                << rpc_ctx.splited_varnames[i];
310
      }
Q
Qiao Longfei 已提交
311
    }
312
  } else {
M
MRXLT 已提交
313 314
    PADDLE_THROW(platform::errors::InvalidArgument(
        "unsupported var type: %s to send!", send_var->Type()));
Q
Qiao Longfei 已提交
315 316
  }

317
  VLOG(4) << "Prepare to send var " << rpc_ctx.var_name;
318 319
  if (sync) {
    for (auto &handle : rets) {
320
      VLOG(4) << "Wait send var to pserver handle: " << handle;
321 322
      PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                                "internal error in RPCClient"));
Q
Qiao Longfei 已提交
323 324 325 326
    }
  }
}

Q
Qiao Longfei 已提交
327 328
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
329 330 331
};  // namespace distributed
};  // namespace operators
};  // namespace paddle