parameter_send.cc 6.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_send.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

static size_t GetSectionIndex(int64_t id,
                              const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (id < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

static std::vector<int64_t> ToAbsoluteSection(
    const std::vector<int>& height_sections) {
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

static std::vector<std::vector<int64_t>> SplitIds(
    const std::vector<int64_t>& ids_vector,
    const std::vector<int>& height_section, framework::Scope* scope) {
  std::set<int64_t> all_ids;
  for (auto id : ids_vector) {
    all_ids.insert(id);
  }

  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id, abs_sections);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
  return splited_ids;
}

static void SplitIdsIntoMultipleVarsBySection(
    const std::vector<std::string>& in_var_names,
    const std::vector<int>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    framework::Scope* scope) {
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor =
        scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

void send(const std::string& var_name,
          const std::vector<std::string>& send_varnames,
          const std::vector<std::string>& epmap,
          const std::vector<int>& height_sections,
          const framework::ExecutionContext& context,
          const framework::Scope& scope, bool sync) {
  framework::Scope* local_scope = scope.NewTmpScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& cpu_ctx = *pool.Get(platform::CPUPlace());
  auto& actual_ctx = *pool.Get(context.GetPlace());

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
          context.Attr<int>("trainer_id"));

  auto* send_var = scope.FindVar(var_name);
  size_t out_num = send_varnames.size();
  if (send_var->IsType<framework::LoDTensor>()) {
    auto& send_tensor = send_var->Get<framework::LoDTensor>();
    auto& send_tensor_dims = send_tensor.dims();
    std::vector<framework::DDim> outs_dims;
    outs_dims.reserve(out_num);

    // infer output shape
    int num = context.Attr<int>("num");
    if (num > 0) {
      int64_t in_axis_dim = send_tensor_dims[0];
      PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
                        "tensor split does not result"
                        " in an equal division");
      size_t out_axis_dim = in_axis_dim / num;
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = out_axis_dim;
        outs_dims.push_back(dim);
      }
    } else if (height_sections.size() > 0) {
      PADDLE_ENFORCE_EQ(height_sections.size(), out_num,
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = height_sections[i];
        outs_dims.push_back(dim);
      }
    }

    // create output var in local scope
    size_t row_offset = 0;
    for (auto i = 0; i < out_num; ++i) {
      auto* out =
          local_scope->Var(send_varnames[i])->GetMutable<framework::Tensor>();
      *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
      row_offset += outs_dims[i][0];
    }
  } else if (send_var->IsType<framework::LoDTensor>()) {
    // create output var in local scope
    for (auto& name : send_varnames) {
      local_scope->Var(name)->GetMutable<framework::SelectedRows>();
    }
  } else {
    PADDLE_THROW("unsupported var type");
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < send_varnames.size(); i++) {
    auto& send_var_name = send_varnames[i];
    auto& endpoint = epmap[i];
    if (NeedSend(*local_scope, send_var_name)) {
      VLOG(3) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
                                              send_var_name));
    } else {
      VLOG(3) << "don't send non-initialized variable: " << send_varnames[i];
    }
  }

  if (sync) {
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
  }

  delete local_scope;
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle