parameter_send.cc 6.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_send.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

40
template <typename T>
Q
Qiao Longfei 已提交
41 42 43
void send(const std::string& var_name,
          const std::vector<std::string>& send_varnames,
          const std::vector<std::string>& epmap,
Q
Qiao Longfei 已提交
44
          const std::vector<int64_t>& height_sections,
45 46
          const framework::ExecutionContext& ctx, const framework::Scope& scope,
          bool sync) {
Q
Qiao Longfei 已提交
47 48 49 50
  framework::Scope* local_scope = scope.NewTmpScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& cpu_ctx = *pool.Get(platform::CPUPlace());
51
  auto& actual_ctx = *pool.Get(ctx.GetPlace());
Q
Qiao Longfei 已提交
52 53 54

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
55
          ctx.Attr<int>("trainer_id"));
Q
Qiao Longfei 已提交
56 57 58 59 60 61 62 63 64 65

  auto* send_var = scope.FindVar(var_name);
  size_t out_num = send_varnames.size();
  if (send_var->IsType<framework::LoDTensor>()) {
    auto& send_tensor = send_var->Get<framework::LoDTensor>();
    auto& send_tensor_dims = send_tensor.dims();
    std::vector<framework::DDim> outs_dims;
    outs_dims.reserve(out_num);

    // infer output shape
66
    int num = ctx.Attr<int>("num");
Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    if (num > 0) {
      int64_t in_axis_dim = send_tensor_dims[0];
      PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
                        "tensor split does not result"
                        " in an equal division");
      size_t out_axis_dim = in_axis_dim / num;
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = out_axis_dim;
        outs_dims.push_back(dim);
      }
    } else if (height_sections.size() > 0) {
      PADDLE_ENFORCE_EQ(height_sections.size(), out_num,
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = height_sections[i];
        outs_dims.push_back(dim);
      }
    }

    // create output var in local scope
    size_t row_offset = 0;
    for (auto i = 0; i < out_num; ++i) {
      auto* out =
          local_scope->Var(send_varnames[i])->GetMutable<framework::Tensor>();
      *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
      row_offset += outs_dims[i][0];
    }
97 98 99 100 101 102 103 104 105 106 107 108 109 110
  } else if (send_var->IsType<framework::SelectedRows>()) {
    auto& send_slr = send_var->Get<framework::SelectedRows>();
    auto abs_sections = ToAbsoluteSection(height_sections);

    auto send_rows = send_slr.rows();
    std::vector<std::vector<int>> outs_rows_idx;
    std::vector<std::vector<int>> outs_dense_idx;

    outs_rows_idx.resize(out_num);
    outs_dense_idx.resize(out_num);

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
    auto src = send_slr.value().data<T>();

Q
Qiao Longfei 已提交
111
    // create output var in local scope
112
    std::vector<framework::SelectedRows*> outs;
Q
Qiao Longfei 已提交
113
    for (auto& name : send_varnames) {
114 115 116 117 118 119 120 121 122
      auto* out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
      outs.push_back(out);
    }

    // split rows index into output sparse vars
    for (size_t i = 0; i < send_rows.size(); ++i) {
      int out_idx = FindOutIdx(send_rows[i], abs_sections);
      outs_rows_idx[out_idx].push_back(send_rows[i]);
      outs_dense_idx[out_idx].push_back(i);
Q
Qiao Longfei 已提交
123
    }
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    auto place = ctx.GetPlace();

    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
      outs[i]->set_height(height_sections[i]);
      auto dims = send_slr.GetCompleteDims();
      dims[0] = rows_idx.size();
      outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
      outs[i]->mutable_rows()->clear();
      if (rows_idx.size() > 0) {
        for (auto idx : rows_idx) {
          outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
            memory::Copy(
                platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
                src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
                         platform::CUDAPlace(),
                         src + outs_dense_idx[i][j] * row_numel,
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
      }
      PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
                        "rows should has the same size with tensor dim 0");
    }

Q
Qiao Longfei 已提交
160
  } else {
161
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < send_varnames.size(); i++) {
    auto& send_var_name = send_varnames[i];
    auto& endpoint = epmap[i];
    if (NeedSend(*local_scope, send_var_name)) {
      VLOG(3) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
                                              send_var_name));
    } else {
      VLOG(3) << "don't send non-initialized variable: " << send_varnames[i];
    }
  }

  if (sync) {
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
  }

  delete local_scope;
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle