parameter_send.cc 6.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_send.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

40
template <typename T>
Q
Qiao Longfei 已提交
41 42 43 44 45 46 47 48 49 50 51 52
void ParameterSend<T>::operator()(const std::string &var_name,
                                  const std::vector<std::string> &send_varnames,
                                  const std::vector<std::string> &epmap,
                                  const std::vector<int64_t> &height_sections,
                                  const framework::ExecutionContext &ctx,
                                  const framework::Scope &scope, bool sync) {
  framework::Scope *local_scope = scope.NewTmpScope();

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
53
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
54
          ctx.Attr<int>("trainer_id"));
Q
Qiao Longfei 已提交
55

Q
Qiao Longfei 已提交
56
  auto *send_var = scope.FindVar(var_name);
Q
Qiao Longfei 已提交
57 58
  size_t out_num = send_varnames.size();
  if (send_var->IsType<framework::LoDTensor>()) {
Q
Qiao Longfei 已提交
59 60 61 62 63
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
64

Q
Qiao Longfei 已提交
65
      // infer output shape
Q
Qiao Longfei 已提交
66 67 68 69 70 71 72 73 74
      PADDLE_ENFORCE_EQ(height_sections.size(), out_num,
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = height_sections[i];
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82
      // create output var in local scope
      size_t row_offset = 0;
      for (auto i = 0; i < out_num; ++i) {
        auto *out =
            local_scope->Var(send_varnames[i])->GetMutable<framework::Tensor>();
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
Q
Qiao Longfei 已提交
83
    }
84
  } else if (send_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
85
    auto &send_slr = send_var->Get<framework::SelectedRows>();
86 87 88 89 90 91 92 93 94 95 96 97
    auto abs_sections = ToAbsoluteSection(height_sections);

    auto send_rows = send_slr.rows();
    std::vector<std::vector<int>> outs_rows_idx;
    std::vector<std::vector<int>> outs_dense_idx;

    outs_rows_idx.resize(out_num);
    outs_dense_idx.resize(out_num);

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
    auto src = send_slr.value().data<T>();

Q
Qiao Longfei 已提交
98
    // create output var in local scope
Q
Qiao Longfei 已提交
99 100 101
    std::vector<framework::SelectedRows *> outs;
    for (auto &name : send_varnames) {
      auto *out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
102 103 104 105 106 107 108 109
      outs.push_back(out);
    }

    // split rows index into output sparse vars
    for (size_t i = 0; i < send_rows.size(); ++i) {
      int out_idx = FindOutIdx(send_rows[i], abs_sections);
      outs_rows_idx[out_idx].push_back(send_rows[i]);
      outs_dense_idx[out_idx].push_back(i);
Q
Qiao Longfei 已提交
110
    }
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    auto place = ctx.GetPlace();

    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
      outs[i]->set_height(height_sections[i]);
      auto dims = send_slr.GetCompleteDims();
      dims[0] = rows_idx.size();
      outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
      outs[i]->mutable_rows()->clear();
      if (rows_idx.size() > 0) {
        for (auto idx : rows_idx) {
          outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
            memory::Copy(
                platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
                src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
                         platform::CUDAPlace(),
                         src + outs_dense_idx[i][j] * row_numel,
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
      }
      PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
                        "rows should has the same size with tensor dim 0");
    }

Q
Qiao Longfei 已提交
147
  } else {
148
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
149 150 151 152
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < send_varnames.size(); i++) {
Q
Qiao Longfei 已提交
153 154
    auto &send_var_name = send_varnames[i];
    auto &endpoint = epmap[i];
Q
Qiao Longfei 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    if (NeedSend(*local_scope, send_var_name)) {
      VLOG(3) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
                                              send_var_name));
    } else {
      VLOG(3) << "don't send non-initialized variable: " << send_varnames[i];
    }
  }

  if (sync) {
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
  }

  delete local_scope;
}

Q
Qiao Longfei 已提交
173 174
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
175 176 177
};  // namespace distributed
};  // namespace operators
};  // namespace paddle