math_op_patch.py 14.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24 25 26 27 28 29 30 31
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

32 33
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__div__": "A / B",
    "__truediv__": "A / B",
    "__rdiv__": "A /= B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
# method for Tensor from paddle.tensor
# edit it when paddle.tensor has new method about Tensor operation
common_methods = [
    'exp', 'tanh', 'atan', 'sqrt', 'rsqrt', 'abs', 'ceil', 'floor', 'cos',
    'acos', 'asin', 'sin', 'sinh', 'cosh', 'round', 'reciprocal', 'square',
    'rank', 'matmul', 'dot', 'norm', 'transpose', 'dist', 't', 'cross',
    'cholesky', 'bmm', 'histogram', 'equal', 'greater_equal', 'greater_than',
    'is_empty', 'isfinite', 'less_equal', 'less_than', 'logical_and',
    'logical_not', 'logical_or', 'logical_xor', 'not_equal', 'reduce_all',
    'reduce_any', 'allclose', 'equal_all', 'cast', 'expand', 'expand_as',
    'tile', 'flatten', 'gather', 'gather_nd', 'reshape', 'reverse', 'scatter',
    'scatter_nd_add', 'scatter_nd', 'shard_index', 'slice', 'split', 'squeeze',
    'strided_slice', 'unique', 'unique_with_counts', 'unsqueeze', 'flip',
    'unbind', 'roll', 'cumsum', 'increment', 'log', 'pow', 'reciprocal',
    'round', 'rsqrt', 'scale', 'sign', 'stanh', 'sum', 'reduce_prod', 'max',
    'min', 'mm', 'div', 'multiply', 'add', 'logsumexp', 'log1p', 'erf',
    'addcmul', 'addmm', 'clamp', 'trace', 'kron', 'argmax', 'argmin', 'argsort',
    'has_inf', 'has_nan', 'topk', 'index_select', 'nonzero', 'sort',
    'index_sample', 'mean', 'std', 'var', 'elementwise_add', 'elementwise_div',
    'elementwise_floordiv', 'elementwise_mod', 'elementwise_pow',
    'elementwise_sub'
]

_already_patch_variable = False

Y
Yang Yu 已提交
82 83

def monkey_patch_variable():
Y
Yang Yu 已提交
84
    def unique_tmp_name():
Y
Yu Yang 已提交
85
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
86 87 88 89 90 91 92 93

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

94
    def current_block(var):
95
        return var.block.program.current_block()
96 97 98 99 100

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
101 102
    def create_tensor(block, value, dtype, shape):
        value = float(value)
103
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
104 105 106
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
107 108 109 110
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
111
                'force_cpu': False
H
Hongyu Liu 已提交
112 113 114
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
115 116
        return var

Y
Yang Yu 已提交
117 118 119
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
120 121 122
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
123 124
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
125
        batch_dim = -1
126
        out_shape = []
127 128
        for i, d in enumerate(ref_var.shape):
            if d < 0:
129 130 131 132 133 134 135
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
136
        assert batch_dim != -1
137
        block.append_op(
Y
Yang Yu 已提交
138 139 140
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
141
            attrs={
142
                'shape': out_shape,
143 144 145
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
146 147 148 149
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
150 151 152 153
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
154 155 156
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
157
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
158

Y
Yang Yu 已提交
159
        Args:
J
Jiabin Yang 已提交
160

Y
Yang Yu 已提交
161
            self(Variable): The source variable
J
Jiabin Yang 已提交
162 163

            dtype: The target data type
Y
Yang Yu 已提交
164 165

        Returns:
J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
196
        """
197 198 199
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
200 201 202 203 204 205 206
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
        return out

207
    def _scalar_op_(var, scale, bias):
208 209 210 211 212 213 214 215 216 217
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

218
    def _neg_(var):
219
        return _scalar_op_(var, -1.0, 0.0)
220

221 222
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
223

224 225
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
226

227 228
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
229

230 231
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
232

233 234
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)
235

236 237 238 239
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
Y
Yang Yu 已提交
240
        def __impl__(self, other_var):
241 242 243 244 245
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
246 247 248 249 250 251 252 253
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

Y
Yang Yu 已提交
254 255 256 257 258 259 260 261 262 263 264
            lhs_dtype = safe_get_dtype(self)

            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
265
                            current_block(self),
Y
Yang Yu 已提交
266 267 268 269 270 271 272
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
273
                    # add fill_op to current_block
Y
Yang Yu 已提交
274
                    other_var = create_scalar(
275
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
276 277 278 279 280 281 282 283 284

            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

285 286 287 288 289 290
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

291 292
            axis = -1
            if other_var.shape[0] == -1:
293 294 295
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
296
                warnings.warn(
297 298 299 300 301
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
302
            current_block(self).append_op(
Y
Yang Yu 已提交
303 304 305
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
306
                outputs={'Out': out},
307
                attrs={'axis': axis})
Y
Yang Yu 已提交
308 309 310 311 312 313 314 315
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
316
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
317 318 319 320 321 322 323

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
        ('__add__', _binary_creator_('__add__', 'elementwise_add', False,
                                     _scalar_add_)),
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
        ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
                                          True, None)),
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
        for method_name in common_methods:
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

    _already_patch_variable = True