parameter_send.cc 6.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_send.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

40
template <typename T>
41
void ParameterSend<T>::operator()(const RpcContext &rpc_ctx,
Q
Qiao Longfei 已提交
42 43 44 45 46 47 48 49
                                  const framework::ExecutionContext &ctx,
                                  const framework::Scope &scope, bool sync) {
  framework::Scope *local_scope = scope.NewTmpScope();

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
50
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
51
          ctx.Attr<int>("trainer_id"));
Q
Qiao Longfei 已提交
52

53 54
  auto *send_var = scope.FindVar(rpc_ctx.var_name);
  size_t out_num = rpc_ctx.splited_var_names.size();
Q
Qiao Longfei 已提交
55
  if (send_var->IsType<framework::LoDTensor>()) {
Q
Qiao Longfei 已提交
56 57 58 59 60
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
61

Q
Qiao Longfei 已提交
62
      // infer output shape
63
      PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num,
Q
Qiao Longfei 已提交
64 65 66 67
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
68
        dim[0] = rpc_ctx.height_sections[i];
Q
Qiao Longfei 已提交
69 70 71
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
72 73 74
      // create output var in local scope
      size_t row_offset = 0;
      for (auto i = 0; i < out_num; ++i) {
75
        framework::Tensor *out = local_scope->Var(rpc_ctx.splited_var_names[i])
Q
Qiao Longfei 已提交
76
                                     ->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
77 78 79
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
Q
Qiao Longfei 已提交
80
    }
81
  } else if (send_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
82
    auto &send_slr = send_var->Get<framework::SelectedRows>();
83
    auto abs_sections = ToAbsoluteSection(rpc_ctx.height_sections);
84 85 86 87 88 89 90 91 92 93 94

    auto send_rows = send_slr.rows();
    std::vector<std::vector<int>> outs_rows_idx;
    std::vector<std::vector<int>> outs_dense_idx;

    outs_rows_idx.resize(out_num);
    outs_dense_idx.resize(out_num);

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
    auto src = send_slr.value().data<T>();

Q
Qiao Longfei 已提交
95
    // create output var in local scope
Q
Qiao Longfei 已提交
96
    std::vector<framework::SelectedRows *> outs;
97
    for (auto &name : rpc_ctx.splited_var_names) {
Q
Qiao Longfei 已提交
98
      auto *out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
99 100 101 102 103 104 105 106
      outs.push_back(out);
    }

    // split rows index into output sparse vars
    for (size_t i = 0; i < send_rows.size(); ++i) {
      int out_idx = FindOutIdx(send_rows[i], abs_sections);
      outs_rows_idx[out_idx].push_back(send_rows[i]);
      outs_dense_idx[out_idx].push_back(i);
Q
Qiao Longfei 已提交
107
    }
108 109 110 111
    auto place = ctx.GetPlace();

    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
112
      outs[i]->set_height(rpc_ctx.height_sections[i]);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
      auto dims = send_slr.GetCompleteDims();
      dims[0] = rows_idx.size();
      outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
      outs[i]->mutable_rows()->clear();
      if (rows_idx.size() > 0) {
        for (auto idx : rows_idx) {
          outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
            memory::Copy(
                platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
                src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
                         platform::CUDAPlace(),
                         src + outs_dense_idx[i][j] * row_numel,
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
      }
      PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
                        "rows should has the same size with tensor dim 0");
    }

Q
Qiao Longfei 已提交
144
  } else {
145
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
146 147 148
  }

  std::vector<distributed::VarHandlePtr> rets;
149 150 151
  for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) {
    auto &send_var_name = rpc_ctx.splited_var_names[i];
    auto &endpoint = rpc_ctx.epmap[i];
Q
Qiao Longfei 已提交
152 153 154 155 156
    if (NeedSend(*local_scope, send_var_name)) {
      VLOG(3) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
                                              send_var_name));
    } else {
157 158
      VLOG(3) << "don't send non-initialized variable: "
              << rpc_ctx.splited_var_names[i];
Q
Qiao Longfei 已提交
159 160 161
    }
  }

Q
Qiao Longfei 已提交
162 163
  // note!! only support sync send now
  if (true || sync) {
Q
Qiao Longfei 已提交
164 165 166 167 168 169 170 171
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
  }

  delete local_scope;
}

Q
Qiao Longfei 已提交
172 173
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
174 175 176
};  // namespace distributed
};  // namespace operators
};  // namespace paddle