pybind.cc 54.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
39
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
41
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/memory/allocation/multi_bin_buffered_allocator.h"
D
dzhwinter 已提交
43
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/platform/enforce.h"
48
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
51
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
54
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
56
#include "paddle/fluid/pybind/ir.h"
57 58
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
59
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
61

62
#include "paddle/fluid/string/to_string.h"
63

D
Dong Zhihong 已提交
64
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
65
#ifndef _WIN32
Y
Yi Wang 已提交
66
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
67
#endif
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
70 71
#endif

M
minqiyang 已提交
72 73
#include "pybind11/stl.h"

74 75 76 77
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
78 79 80
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

81
namespace paddle {
82
namespace pybind {
83
bool IsCompiledWithCUDA() {
84
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
85 86 87 88 89 90
  return false;
#else
  return true;
#endif
}

91 92 93 94 95 96 97 98
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

107
bool IsCompiledWithBrpc() {
108
#ifndef PADDLE_WITH_DISTRIBUTE
109 110
  return false;
#endif
111 112 113 114 115 116

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
117 118
}

Y
update  
Yancey1989 已提交
119
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
120
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
121 122 123 124 125 126
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
127 128 129 130 131
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

132
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
133 134 135
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
136
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
137 138 139

  paddle::memory::allocation::UseMultiBinBufferedAllocatorGFlags();

140
  m.doc() = "C++ core of PaddlePaddle";
141

142 143 144 145
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

146
  BindException(&m);
Y
Yu Yang 已提交
147

S
sneaxiy 已提交
148
  m.def(
S
sneaxiy 已提交
149
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
150 151 152 153
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
154 155 156
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

157 158 159 160 161 162 163
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
164
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
165 166
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
167
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
168

M
minqiyang 已提交
169
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
170 171 172 173 174 175 176 177
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
178
      .def("_run_backward",
X
Xin Pan 已提交
179
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
180
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
181
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
182
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
183
      .def("_grad_ivar",
M
minqiyang 已提交
184
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
185
           py::return_value_policy::reference)
M
minqiyang 已提交
186
      .def("_copy_to",
P
Paddle CI 已提交
187
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
188 189 190 191 192
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
193
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
194
      .def("_copy_to",
P
Paddle CI 已提交
195
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
196 197 198 199 200
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
201
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
202
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
203
           py::return_value_policy::reference)
204 205 206
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
207
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
208 209 210 211
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
212

213
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
214
      .def(py::init<const std::string &>())
215 216 217 218
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
219 220 221 222 223 224 225 226 227 228
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
229 230 231 232 233 234
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
235 236 237 238 239 240 241
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
242 243
          py::return_value_policy::reference);

X
Xin Pan 已提交
244
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
245
  layer.def(py::init<>())
X
Xin Pan 已提交
246 247 248
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
249
      });
X
Xin Pan 已提交
250

X
polish  
Xin Pan 已提交
251
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
252
      .def(py::init<>())
X
Xin Pan 已提交
253 254
      .def_static(
          "apply",
X
Xin Pan 已提交
255
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
256
              -> std::vector<imperative::VarBase *> {
257 258 259 260 261 262 263 264 265 266 267
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
268 269
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
270 271 272 273 274
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
275

276 277
  BindTracer(&m);

278 279 280
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
281
      .def("_get_dims",
282
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
283
      .def("_set_dims",
Q
qijun 已提交
284
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
285
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
286
           })
Y
yuyang18 已提交
287
      .def("_set_layout",
D
dzhwinter 已提交
288 289 290
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
291
      .def("_alloc_float",
D
dzhwinter 已提交
292
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
293
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
294
           })
Y
yuyang18 已提交
295
      .def("_alloc_float",
Y
Yu Yang 已提交
296
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
297
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
298
           })
Y
yuyang18 已提交
299
      .def("_alloc_int",
Y
Yu Yang 已提交
300
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
301
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
302
           })
Y
yuyang18 已提交
303
      .def("_alloc_int",
D
dzhwinter 已提交
304
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
305
             self.mutable_data<int>(place);
Q
qijun 已提交
306
           })
Y
yuyang18 已提交
307
      .def("_alloc_int",
C
chengduoZH 已提交
308 309 310
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
311
      .def("_alloc_float",
C
chengduoZH 已提交
312 313 314
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
S
sneaxiy 已提交
315
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
316 317
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
318
      .def("set", PyCPUTensorSetFromArray<double>)
319
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
320
      .def("set", PyCPUTensorSetFromArray<bool>)
321
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
322
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
323
      .def("set", PyCPUTensorSetFromArray<int8_t>)
324
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
325 326
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
327
      .def("set", PyCUDATensorSetFromArray<double>)
328
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
329
      .def("set", PyCUDATensorSetFromArray<bool>)
330
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
331
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
332
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
333 334 335 336 337 338
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
339
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
340
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
341
#endif
342
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
343 344 345 346
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
347
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
348
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
349

X
Xin Pan 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
363
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
364
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
365
     columns, hence [5, 2].
X
Xin Pan 已提交
366 367 368

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
369 370
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
394 395
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
396 397 398 399 400 401 402 403 404 405 406 407 408 409
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
410
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
411 412 413 414 415
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
416
      .def("set_lod",
417
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
418
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
419
             LoD new_lod;
420 421
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
422 423
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
424
             self.set_lod(new_lod);
S
sneaxiy 已提交
425 426 427 428 429 430 431
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
447 448 449 450
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
451
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
452 453
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
454 455

           Args:
456
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
457
           )DOC")
458 459 460 461 462 463 464 465
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
466 467 468 469 470 471 472
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
473
      // Set above comments of set_lod.
474 475 476 477 478 479 480 481
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
482 483 484 485 486
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
487
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
501

Q
qijun 已提交
502 503 504 505 506 507 508 509 510 511 512
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
513 514
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
515 516
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
517 518 519 520 521 522 523 524 525
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
526
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
527
      .def("rows", [](SelectedRows &self) {
528 529 530 531 532
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
533
      });
Q
qijun 已提交
534

535
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
536 537 538

All parameter, weight, gradient are variables in Paddle.
)DOC")
539
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
540
      .def("set_int",
541 542
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
543 544 545 546 547 548 549
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
550
      .def("get_tensor",
551 552
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
553 554
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
555 556 557
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
558 559 560 561 562
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
563 564 565
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
566
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
567 568 569 570 571
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
572
#endif
Y
Refine  
Yu Yang 已提交
573 574 575 576 577
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
578
           py::return_value_policy::reference);
579

Y
Refine  
Yu Yang 已提交
580
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
581
      .def("start", &framework::ReaderHolder::Start)
582
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
583

S
sneaxiy 已提交
584 585 586 587
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
588 589
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
590
      .def("push",
S
sneaxiy 已提交
591
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
592
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
593
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
594
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
595
           })
S
sneaxiy 已提交
596 597 598 599
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
600

S
sneaxiy 已提交
601
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
602 603 604 605 606 607
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
608
        py::return_value_policy::copy);
S
sneaxiy 已提交
609

S
sneaxiy 已提交
610
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
630 631
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
632
      .def("var",
633
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
634
             return self.Var(name);
Y
Yu Yang 已提交
635
           },
S
sneaxiy 已提交
636 637
           py::arg("name"),
           R"DOC(
638
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
639

640
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
641
           current scope, the variable would be created. Otherwise,
642
           return the existing variable.
S
sneaxiy 已提交
643 644

           Args:
645 646
               name (str): the variable name.

S
sneaxiy 已提交
647
           Returns:
648
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
649 650 651 652
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
653
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
654
           its parent scope. Return None if not found.
655

S
sneaxiy 已提交
656 657
           Args:
               name (str): the variable name.
658

S
sneaxiy 已提交
659
           Returns:
660
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
661
           )DOC",
662
           py::return_value_policy::reference)
663
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
664 665 666 667 668 669
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
670
           py::return_value_policy::reference)
S
sneaxiy 已提交
671 672 673 674
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
           )DOC");
675

S
sneaxiy 已提交
676 677 678 679 680 681
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
682 683
        R"DOC(
        Create a new scope.
684

S
sneaxiy 已提交
685 686 687
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
688 689
        py::return_value_policy::reference);

Y
Yu Yang 已提交
690 691
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
692 693
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
694 695 696 697 698 699 700 701 702 703
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
704 705
    return ret_values;
  });
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
722
  m.def("prune", [](const ProgramDesc &origin,
723
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
724
    ProgramDesc prog_with_targets(origin);
725
    for (const auto &t : targets) {
726
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
727
    }
728
    proto::ProgramDesc pruned_desc;
729
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
730
    return new ProgramDesc(pruned_desc);
731
  });
732 733 734 735
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
736 737 738
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
739 740
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
741
  // clang-format off
Y
Yu Yang 已提交
742
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
743 744
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
745
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
746 747 748
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
749
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
750
                      -> paddle::platform::DeviceContext* {
751
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
752
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
753
#else
Q
qijun 已提交
754
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
755
#endif
C
chengduoZH 已提交
756 757 758 759 760 761 762 763 764 765 766
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
767
// clang-format on
P
peizhilin 已提交
768
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
769 770
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
771
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
772 773 774 775 776 777 778 779 780 781 782 783
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
784 785 786 787 788
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
789
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
790

791 792
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
793 794 795 796 797
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
798
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
799

C
chengduoZH 已提交
800
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
801
      .def("__init__",
S
sneaxiy 已提交
802
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
803 804 805
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
806
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
807
           })
S
sneaxiy 已提交
808 809 810 811 812 813 814
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
815 816
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
817 818
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
819 820 821 822
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
823 824 825 826 827 828
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
829 830 831 832 833
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
834
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
835
             self = gpu_place;
C
chengduoZH 已提交
836 837
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
838 839
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
840
      });
Y
Yu Yang 已提交
841

Y
Yu Yang 已提交
842 843 844
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
845
                    proto::OpDesc desc;
Y
Yu Yang 已提交
846 847 848 849 850
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
851
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
852
                  })
853
      .def("run",
854
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
855 856 857
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
858
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
859 860 861 862 863
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
864 865 866 867 868 869 870
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
871 872
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
873
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
874
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
875 876 877 878
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
879

F
fengjiayi 已提交
880
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
881
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
882
      .def("close", &Executor::Close)
S
sneaxiy 已提交
883
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
884 885
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
886
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
887 888
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
889
      });
S
sneaxiy 已提交
890

D
dzhwinter 已提交
891
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
892
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
893 894
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
895

896
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
897
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
898
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
899
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
900
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
901 902 903 904 905 906
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
907

908
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
909
  m.def("get_fetch_variable", framework::GetFetchVariable);
910
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
911

X
Xin Pan 已提交
912 913
  m.def("_is_program_version_supported", IsProgramVersionSupported);

914 915 916 917 918
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
919

Y
Yu Yang 已提交
920 921 922 923 924 925 926 927 928
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
929
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
930 931
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
932 933 934 935 936 937 938 939 940 941
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
942 943 944 945 946 947 948
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
949

D
dzhwinter 已提交
950 951 952
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
953
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
954
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
955
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
956

P
peizhilin 已提交
957
#ifndef _WIN32
D
dangqingqing 已提交
958 959 960
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
961
#endif
P
peizhilin 已提交
962
#endif
Y
Yu Yang 已提交
963

964 965 966 967
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
968
      .value("kAll", platform::ProfilerState::kAll)
969 970 971 972 973 974 975 976 977 978 979 980 981
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
982
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
983
  m.def("reset_profiler", platform::ResetProfiler);
984
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
985 986 987
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
988

989 990
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
991
      .def("has", &ir::Pass::Has)
992 993 994
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
995
           })
996
      .def(
997
          "set",
998 999 1000
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1001 1002
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1003 1004 1005 1006
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1007
        optim_graph.release();
F
flame 已提交
1008
      });
1009

X
fix  
Xin Pan 已提交
1010 1011
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1026
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1027

Y
yuyang18 已提交
1028
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1029 1030 1031 1032
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1044 1045 1046

        )DOC");

Y
yuyang18 已提交
1047
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1048 1049 1050 1051 1052
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1063
      .def_property(
1064 1065 1066 1067
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1068 1069 1070 1071
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1072 1073 1074 1075 1076
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1077 1078 1079 1080
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1081 1082 1083 1084 1085 1086 1087
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1099 1100 1101 1102 1103 1104
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1105

Y
yuyang18 已提交
1106
  exec_strategy.def_property(
Y
yuyang18 已提交
1107 1108 1109 1110 1111 1112 1113
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1114 1115
      });

C
chengduo 已提交
1116 1117 1118 1119
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1131
)DOC");
Y
yuyang18 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1148
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1149
            self.reduce_ = strategy;
C
chengduo 已提交
1150 1151 1152 1153 1154 1155 1156
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1157 1158 1159 1160 1161
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1162
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1163
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1164 1165 1166 1167 1168 1169
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1170 1171 1172 1173
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1174
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1175
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1176 1177 1178 1179
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1180 1181 1182 1183 1184 1185
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1186
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1196
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1197 1198
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1199
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1200 1201 1202 1203 1204 1205
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1218 1219 1220 1221 1222 1223
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1224
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1225 1226 1227 1228 1229
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1259 1260 1261 1262
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1263 1264 1265 1266
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1267
      .def_property(
D
dzhwinter 已提交
1268 1269 1270
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
1271
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1272
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1273 1274 1275 1276 1277
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1278 1279

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1280
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1281
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1282
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1283 1284 1285 1286
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1287 1288 1289 1290 1291
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1292 1293 1294 1295
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1296 1297 1298 1299 1300 1301
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1302

1303
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1304
  BindAsyncExecutor(&m);
F
flame 已提交
1305 1306
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1307
  BindInferenceApi(&m);
L
Luo Tao 已提交
1308
}
1309
}  // namespace pybind
1310
}  // namespace paddle