coalesce_tensor_op.cc 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <vector>
17

18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
24
#ifdef PADDLE_WITH_ASCEND_CL
25
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
26
#endif
27
#include "paddle/fluid/framework/convert_utils.h"
28 29 30
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
31 32
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/infermeta/multiary.h"
33 34 35 36

namespace paddle {
namespace operators {

37 38 39
template <typename DeviceContext>
struct FillConstantVisitor {
  FillConstantVisitor(const DeviceContext &dev_ctx,
40
                      phi::DenseTensor *tensor,
41
                      const float value,
42 43 44 45 46 47 48
                      framework::proto::VarType::Type dtype,
                      const framework::ExecutionContext &context)
      : dev_ctx_(dev_ctx),
        tensor_(tensor),
        value_(value),
        dtype_(dtype),
        context_(context) {}
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

  template <typename T>
  void apply(typename std::enable_if<std::is_same<T, int8_t>::value ||
                                     std::is_same<T, int16_t>::value>::type * =
                 nullptr) const {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Not support data type for set_constant attr"));
  }

  template <typename T>
  void apply(typename std::enable_if<!(std::is_same<T, int8_t>::value ||
                                       std::is_same<T, int16_t>::value)>::type
                 * = nullptr) const {
#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(dev_ctx_.GetPlace())) {
64
      Tensor tensor_tmp(framework::TransToPhiDataType(dtype_));
65 66 67 68
      tensor_tmp.mutable_data<T>({1}, context_.GetPlace());
      FillNpuTensorWithConstant<T>(&tensor_tmp, static_cast<T>(value_));

      const auto &runner =
69 70 71
          NpuOpRunner("FillD",
                      {tensor_tmp},
                      {*tensor_},
72
                      {{"dims", phi::vectorize(tensor_->dims())}});
73 74 75 76
      auto stream =
          context_.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);
77
    } else {
78
      phi::funcs::SetConstant<DeviceContext, T> set_constant;
79 80
      set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
    }
81 82 83 84 85 86 87
#elif defined(PADDLE_WITH_MLU)
    if (platform::is_mlu_place(context_.GetPlace())) {
      FillMLUTensorWithHostValue<T>(context_, static_cast<T>(value_), tensor_);
    } else {
      phi::funcs::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
    }
88
#else
89
    phi::funcs::SetConstant<DeviceContext, T> set_constant;
90 91 92 93 94
    set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
#endif
  }

  const DeviceContext &dev_ctx_;
95
  phi::DenseTensor *tensor_;
96
  float value_;
97 98
  framework::proto::VarType::Type dtype_;
  const framework::ExecutionContext &context_;
99 100
};

101
template <typename DeviceContext, typename T>
102
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
103 104
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
105 106
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
107 108
    const auto &in_tensors = context.MultiInput<phi::DenseTensor>("Input");
    auto out_tensors = context.MultiOutput<phi::DenseTensor>("Output");
109

110 111
    PADDLE_ENFORCE_GT(in_var_names.size(),
                      static_cast<size_t>(0),
112 113
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
114 115
    PADDLE_ENFORCE_EQ(in_var_names.size(),
                      out_var_names.size(),
116 117 118 119
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
120 121
                          in_var_names.size(),
                          out_var_names.size()));
122

123
    // Input & Output check: only support LoDTensor
124 125
    bool has_not_init_in_vars = false;
    for (size_t i = 0; i < in_tensors.size(); ++i) {
126
      PADDLE_ENFORCE_NOT_NULL(
127 128 129
          in_tensors[i],
          platform::errors::InvalidArgument(
              "The %d-th input tensor cannot be nullptr.", i));
130
      PADDLE_ENFORCE_NOT_NULL(
131 132 133
          out_tensors[i],
          platform::errors::InvalidArgument(
              "The %d-th output tensor cannot be nullptr.", i));
134 135 136 137 138 139 140 141 142 143
      if (!in_tensors[i]->IsInitialized()) {
        has_not_init_in_vars = true;
      }
    }

    if (has_not_init_in_vars) {
      const auto &concated_shapes =
          context.Attr<std::vector<int64_t>>("concated_shapes");
      const auto &concated_ranks =
          context.Attr<std::vector<int64_t>>("concated_ranks");
144 145
      PADDLE_ENFORCE_EQ(concated_ranks.size(),
                        out_tensors.size(),
146
                        platform::errors::InvalidArgument(
147 148 149 150 151 152 153 154
                            "The attribute(concated_ranks) length must be "
                            "equal to the output tensor number."));
      int64_t accumulated_ranks = 0;
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        framework::DDim dims(concated_shapes.data() + accumulated_ranks,
                             concated_ranks[i]);
        if (!in_tensors[i]->IsInitialized()) {
          PADDLE_ENFORCE_EQ(
155 156
              in_tensors[i],
              out_tensors[i],
157 158 159
              platform::errors::InvalidArgument(
                  "The %d-th output tensor and %d-th input tensor when the "
                  "%d-th input tensor is not initialized.",
160 161 162
                  i,
                  i,
                  i));
163 164 165
          out_tensors[i]->Resize(dims);
        } else {
          PADDLE_ENFORCE_EQ(
166 167
              in_tensors[i]->dims(),
              dims,
168 169 170 171 172 173 174
              platform::errors::InvalidArgument(
                  "The %d-th input tensor shape does not match the "
                  "attribute(concated_shapes) and "
                  "attribute(concated_ranks).",
                  i));
        }
        accumulated_ranks += concated_ranks[i];
175 176
        PADDLE_ENFORCE_LE(accumulated_ranks,
                          concated_shapes.size(),
177 178 179 180
                          platform::errors::InvalidArgument(
                              "The attribute(concated_shapes) and "
                              "attribute(concated_ranks) do not match."));
      }
181 182
      PADDLE_ENFORCE_EQ(accumulated_ranks,
                        concated_shapes.size(),
183
                        platform::errors::InvalidArgument(
184 185
                            "The attribute(concated_shapes) and "
                            "attribute(concated_ranks) do not match."));
186 187
    }

188
    bool use_align = context.Attr<bool>("use_align");
189
    auto align_size = context.Attr<int>("align_size");
190
    auto size_of_dtype = context.Attr<int>("user_defined_size_of_dtype");
191 192 193

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
194
        PADDLE_ENFORCE_EQ(
195 196
            in_var_names[i],
            out_var_names[i],
197 198 199
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
200 201 202 203
                i,
                in_var_names[i],
                i,
                out_var_names[i]));
204 205 206 207
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
208
        out_tensors[i]->Resize(in_tensors[i]->dims());
209 210 211 212 213 214 215
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
216 217
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
218 219 220
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
221 222 223 224 225 226 227
    GetMemSizeAndDtype(in_tensors,
                       in_var_names,
                       &numel,
                       size_of_dtype,
                       context.GetPlace(),
                       use_align,
                       align_size);
228 229

    // Alloc the continuous space
230
    auto fused_tensor = context.Output<phi::DenseTensor>("FusedOutput");
231
    void *fused_tensor_ptr =
232
        fused_tensor->Resize(phi::make_ddim({static_cast<int64_t>(numel)}))
233
            .mutable_data(context.GetPlace(),
234
                          framework::TransToPhiDataType(dtype));
235
    VLOG(10) << "Fused tensor addr " << fused_tensor_ptr;
236 237

    // Init the continuous space
C
chengduo 已提交
238
    size_t offset = 0;
239
    if (context.Attr<bool>("copy_data")) {
240 241 242 243 244 245
#ifdef PADDLE_WITH_ASCEND_CL
      framework::VisitDataType(
          dtype,
          FillConstantVisitor<DeviceContext>(
              dev_ctx, fused_tensor, static_cast<float>(0.0), dtype, context));
#endif
246
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
247 248 249
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
250 251 252 253 254 255 256 257
        framework::TensorCopy(
            *in_tensors[i], context.GetPlace(), dev_ctx, &sub_tensor);

        offset += use_align ? platform::Alignment(len * size_of_dtype,
                                                  context.GetPlace(),
                                                  align_size) /
                                  size_of_dtype
                            : len;
258 259
      }
    } else if (context.Attr<bool>("set_constant")) {
260
      framework::VisitDataType(
261 262 263 264 265 266
          dtype,
          FillConstantVisitor<DeviceContext>(dev_ctx,
                                             fused_tensor,
                                             context.Attr<float>("constant"),
                                             dtype,
                                             context));
267 268 269 270 271 272 273
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
274 275
          framework::TensorCopy(
              *out_tensors[i], context.GetPlace(), dev_ctx, &sub_tensor);
276
        }
277 278 279 280 281
        offset += use_align ? platform::Alignment(len * size_of_dtype,
                                                  context.GetPlace(),
                                                  align_size) /
                                  size_of_dtype
                            : len;
282
      }
283 284 285 286
    }

    // Make the outputs point to the continuous space.
    offset = 0;
287 288
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
289

290
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
291
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
292
      auto dim = out_tensors[i]->dims();
293
      VLOG(4) << len << " " << dim << " " << offset;
294
      out_tensors[i]
C
chengduo 已提交
295 296
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
297
          .Resize(dim);
298 299 300 301 302
      len = use_align
                ? platform::Alignment(
                      len * size_of_dtype, context.GetPlace(), align_size) /
                      size_of_dtype
                : len;
303
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
304
         << " address: " << out_tensors[i]->data() << " len: " << len << ", ";
305
      offset += len;
306
    }
307
    PADDLE_ENFORCE_EQ(
308 309
        (int64_t)offset,
        fused_tensor->numel(),
310 311 312
        platform::errors::InvalidArgument(
            "The alloc_space_for_vars's offset: %s is unequal with "
            "fused_tensor's numel: %s.",
313 314
            offset,
            fused_tensor->numel()));
315
    VLOG(10) << ss.str();
316 317
  }

C
chengduo 已提交
318
 private:
319
  void GetMemSizeAndDtype(
320
      const std::vector<const phi::DenseTensor *> &lod_tensors,
321 322 323 324 325 326
      const std::vector<std::string> var_names,
      size_t *numel,
      const size_t &size_of_dtype,
      const platform::Place &place,
      const bool use_align = true,
      const int align_size = -1) const {
327
    PADDLE_ENFORCE_EQ(
328 329
        lod_tensors.size(),
        var_names.size(),
330 331 332
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
333 334
            lod_tensors.size(),
            var_names.size()));
335
    *numel = 0;
336 337
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
338 339
    for (size_t i = 0; i < var_names.size(); ++i) {
      auto size = lod_tensors[i]->numel();
340
      PADDLE_ENFORCE_GT(
341 342
          size,
          0,
343 344
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
345 346
      auto len = use_align ? platform::Alignment(
                                 static_cast<size_t>(size) * size_of_dtype,
347 348
                                 place,
                                 align_size) /
349 350
                                 size_of_dtype
                           : static_cast<size_t>(size);
351 352
      const void *ptr =
          lod_tensors[i]->IsInitialized() ? lod_tensors[i]->data() : nullptr;
353
      VLOG(4) << size << " " << len;
354
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
355
         << ") "
356
         << " addres:" << ptr << " len: " << len << ", ";
357
      *numel += len;
358
    }
359
    VLOG(10) << ss.str();
360 361 362
  }
};

363
class CoalesceTensorOp : public framework::OperatorWithKernel {
364 365 366
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

367 368 369 370 371 372
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->IsRuntime()) {
      return;
    }
    auto use_align = ctx->Attrs().Get<bool>("use_align");
    auto align_size = ctx->Attrs().Get<int>("align_size");
373
    auto size_of_dtype = ctx->Attrs().Get<int>("user_defined_size_of_dtype");
374 375 376

    auto dtype = static_cast<framework::proto::VarType::Type>(
        ctx->Attrs().Get<int>("dtype"));
377 378 379
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
380 381 382 383 384 385 386 387 388 389 390 391 392 393

    auto alignment = [](size_t size, size_t align_size) {
      size_t remaining = size % align_size;
      auto aligned_size =
          remaining == 0 ? size : size + (align_size - remaining);
      VLOG(4) << remaining << " " << size << " " << align_size << " "
              << aligned_size;
      return aligned_size;
    };
    VLOG(4) << "align_size: " << align_size;
    if (use_align && align_size > 0) {
      int64_t numel = 0;
      auto dims = ctx->GetInputsDim("Input");
      for (const auto &dim : dims) {
394
        auto size = phi::product(dim);
395 396 397 398 399 400 401
        auto len = use_align
                       ? alignment(static_cast<size_t>(size) * size_of_dtype,
                                   align_size) /
                             size_of_dtype
                       : static_cast<size_t>(size);
        numel += len;
      }
402 403
      ctx->SetOutputDim("FusedOutput", phi::make_ddim({numel}));
      VLOG(4) << "FusedOutput size:" << phi::make_ddim({numel});
404 405
    }
  }
406 407

 protected:
408 409 410 411 412 413 414
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &context) const override {
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    return framework::OpKernelType(dtype, context.GetPlace());
  }

415
  framework::OpKernelType GetKernelTypeForVar(
416
      const std::string &var_name,
417
      const phi::DenseTensor &tensor,
418 419 420 421 422
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
423 424
};

425
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
426 427 428 429
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
430
             " coalesce_tensor operator.")
431 432 433
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
434
              "tensors of coalesce_tensor operator. And the address "
435 436 437 438 439
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
440
              "of coalesce_tensor operator. And the tensors of"
441
              " Output is sliced from the tensor of FusedOutput.");
442
    AddAttr<int>("dtype", "The output data type.");
443 444 445 446 447
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
448 449 450
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
451 452 453 454 455 456 457 458
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
459 460 461 462
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
463 464
    AddAttr<int>("align_size", "The alignment size when use_align is True")
        .SetDefault(-1);
465 466 467 468 469 470 471 472 473
    AddAttr<int>("user_defined_size_of_dtype",
                 "The user defined size of dtype. This is used to coalesce "
                 "grad vars and merged_grad vars at the same time. For some "
                 "strategy, the dtype of fused_grad_vars and the dtype of "
                 "fused_grad_merged_vars are not identical, which will cause "
                 "the shape of these two coalesced vars are different. To "
                 "make sure the shape of these two vars are identical with "
                 "each other, this attr is added.")
        .SetDefault(-1);
474 475 476 477 478 479 480 481 482 483 484 485 486 487
    AddAttr<std::vector<int64_t>>(
        "concated_shapes",
        "The concated shapes of each shape of the input tensors. "
        "If any of the input tensors are not inited, this is used to "
        "init the output tensor shape, together with "
        "attribute(concated_ranks).")
        .SetDefault({});
    AddAttr<std::vector<int64_t>>(
        "concated_ranks",
        "The concated ranks of each rank of the input tensors. "
        "If any of the input tensors are not inited, this is used to "
        "init the output tensor shape, together with "
        "attribute(concated_shapes).")
        .SetDefault({});
488
    AddComment(R"DOC(
489
CoalesceTensor Operator.
490

491
coalesce_tensor is used to make the address of Output
492 493 494 495 496 497 498 499
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
500
coalesce_tensor allows copying the value of Input to Output, or
501 502
setting the Output with a constant value, or persist the original Output
value.
503 504 505 506 507 508 509 510

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

511 512 513 514
DECLARE_INFER_SHAPE_FUNCTOR(coalesce_tensor,
                            CoalesceTensorInferShapeFunctor,
                            PD_INFER_META(phi::CoalesceTensorInferMeta));

515 516
REGISTER_OPERATOR(coalesce_tensor,
                  paddle::operators::CoalesceTensorOp,
517 518
                  paddle::operators::CoalesceTensorOpMaker,
                  CoalesceTensorInferShapeFunctor);
519
namespace ops = paddle::operators;
520
namespace plat = paddle::platform;
521

522 523 524 525 526 527 528 529 530 531
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_CUDA_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, double>);
#endif

532 533 534
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL(
    coalesce_tensor,
L
Leo Chen 已提交
535 536 537 538
    ops::CoalesceTensorOpKernel<phi::CPUContext, int>,
    ops::CoalesceTensorOpKernel<phi::CPUContext, float>,
    ops::CoalesceTensorOpKernel<phi::CPUContext, plat::float16>,
    ops::CoalesceTensorOpKernel<phi::CPUContext, double>);
539 540
#endif

541 542 543
#if defined(PADDLE_WITH_MLU)
REGISTER_OP_MLU_KERNEL(
    coalesce_tensor,
L
Leo Chen 已提交
544 545 546
    ops::CoalesceTensorOpKernel<phi::CPUContext, plat::float16>,
    ops::CoalesceTensorOpKernel<phi::CPUContext, int>,
    ops::CoalesceTensorOpKernel<phi::CPUContext, float>);
547 548
#endif

549 550 551 552 553 554 555 556 557
REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
558 559 560 561 562 563 564 565 566 567 568
            true))
    .AddCheckpoint(
        R"ROC(
                Upgrade coalesce_tensor: add a new attribute [align_size].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_size",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is -1 and use the default "
            "align_size "
            "of each place to be compatible with before.",
            -1));