coalesce_tensor_op.cc 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/op_version_registry.h"
19 20 21
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
22
#include "paddle/fluid/platform/device_memory_aligment.h"
23 24 25
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/operators/npu_op_runner.h"
#endif
26 27 28 29

namespace paddle {
namespace operators {

30 31 32
template <typename DeviceContext>
struct FillConstantVisitor {
  FillConstantVisitor(const DeviceContext &dev_ctx,
33 34 35 36 37 38 39 40
                      framework::LoDTensor *tensor, const float value,
                      framework::proto::VarType::Type dtype,
                      const framework::ExecutionContext &context)
      : dev_ctx_(dev_ctx),
        tensor_(tensor),
        value_(value),
        dtype_(dtype),
        context_(context) {}
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  template <typename T>
  void apply(typename std::enable_if<std::is_same<T, int8_t>::value ||
                                     std::is_same<T, int16_t>::value>::type * =
                 nullptr) const {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Not support data type for set_constant attr"));
  }

  template <typename T>
  void apply(typename std::enable_if<!(std::is_same<T, int8_t>::value ||
                                       std::is_same<T, int16_t>::value)>::type
                 * = nullptr) const {
#ifdef PADDLE_WITH_ASCEND_CL
    if (platform::is_npu_place(dev_ctx_.GetPlace())) {
56 57 58 59 60 61 62 63 64 65 66
      Tensor tensor_tmp(dtype_);
      tensor_tmp.mutable_data<T>({1}, context_.GetPlace());
      FillNpuTensorWithConstant<T>(&tensor_tmp, static_cast<T>(value_));

      const auto &runner =
          NpuOpRunner("FillD", {tensor_tmp}, {*tensor_},
                      {{"dims", framework::vectorize(tensor_->dims())}});
      auto stream =
          context_.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);
67 68 69 70 71 72 73 74 75 76 77 78 79
    } else {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
    }
#else
    math::SetConstant<DeviceContext, T> set_constant;
    set_constant(dev_ctx_, tensor_, static_cast<T>(value_));
#endif
  }

  const DeviceContext &dev_ctx_;
  framework::LoDTensor *tensor_;
  float value_;
80 81
  framework::proto::VarType::Type dtype_;
  const framework::ExecutionContext &context_;
82 83
};

84
template <typename DeviceContext, typename T>
85
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
86 87
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
88 89
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
90 91 92
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

93
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
94 95 96 97 98 99 100 101
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
102

103
    // Input & Output check: only support LoDTensor
104
    for (size_t i = 0; i < in_var_names.size(); ++i) {
105 106
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
107 108 109
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
110 111
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
112 113 114 115 116 117 118 119 120 121 122 123
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
124
                            out_var_names[i]));
125 126 127
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
128
    bool use_align = context.Attr<bool>("use_align");
129
    auto align_size = context.Attr<int>("align_size");
130
    auto size_of_dtype = context.Attr<int>("user_defined_size_of_dtype");
131 132 133

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
134 135
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
136 137 138 139
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
140 141 142 143 144 145 146 147 148 149 150 151 152
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
153 154
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
155 156 157
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
158
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
159
                       context.GetPlace(), use_align, align_size);
160 161 162 163 164 165 166 167

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
168
    size_t offset = 0;
169 170
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
171 172 173 174
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
175
                              &sub_tensor);
C
chengduo 已提交
176

177 178 179 180 181
        offset += use_align
                      ? platform::Alignment(len * size_of_dtype,
                                            context.GetPlace(), align_size) /
                            size_of_dtype
                      : len;
182 183
      }
    } else if (context.Attr<bool>("set_constant")) {
184 185
      framework::VisitDataType(
          dtype, FillConstantVisitor<DeviceContext>(
186 187
                     dev_ctx, fused_tensor, context.Attr<float>("constant"),
                     dtype, context));
188 189 190 191 192 193 194 195 196 197
    } else if (context.Attr<bool>("persist_output")) {
      for (size_t i = 0; i < out_var_names.size(); ++i) {
        size_t len = static_cast<size_t>(out_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        // some var may not persistable, or persistable var may not init
        if (out_tensors[i]->IsInitialized()) {
          framework::TensorCopy(*out_tensors[i], context.GetPlace(), dev_ctx,
                                &sub_tensor);
        }
198 199 200 201 202
        offset += use_align
                      ? platform::Alignment(len * size_of_dtype,
                                            context.GetPlace(), align_size) /
                            size_of_dtype
                      : len;
203
      }
204 205 206 207
    }

    // Make the outputs point to the continuous space.
    offset = 0;
208 209
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
210

211
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
212
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
213
      auto dim = out_tensors[i]->dims();
214
      VLOG(4) << len << " " << dim << " " << offset;
215
      out_tensors[i]
C
chengduo 已提交
216 217
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
218
          .Resize(dim);
219
      len = use_align
220 221
                ? platform::Alignment(len * size_of_dtype, context.GetPlace(),
                                      align_size) /
222 223
                      size_of_dtype
                : len;
224
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
225 226 227
         << " address: " << out_tensors[i]->data<void>() << " len: " << len
         << ", ";
      offset += len;
228
    }
229 230 231 232 233 234
    PADDLE_ENFORCE_EQ(
        (int64_t)offset, fused_tensor->numel(),
        platform::errors::InvalidArgument(
            "The alloc_space_for_vars's offset: %s is unequal with "
            "fused_tensor's numel: %s.",
            offset, fused_tensor->numel()));
235
    VLOG(10) << ss.str();
236 237
  }

C
chengduo 已提交
238
 private:
239 240 241
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
242
      const size_t &size_of_dtype, const platform::Place &place,
243
      const bool use_align = true, const int align_size = -1) const {
244 245 246 247 248 249
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
250
    *numel = 0;
251 252
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
253
    for (size_t i = 0; i < var_names.size(); ++i) {
254
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
255 256
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
257 258

      auto size = lod_tensors[i]->numel();
259 260 261 262
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
263 264 265 266 267 268 269
      auto len =
          use_align
              ? platform::Alignment(static_cast<size_t>(size) * size_of_dtype,
                                    place, align_size) /
                    size_of_dtype
              : static_cast<size_t>(size);
      VLOG(4) << size << " " << len;
270
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
271
         << ") "
272 273 274
         << " addres:" << lod_tensors[i]->data<void>() << " len: " << len
         << ", ";
      *numel += len;
275
    }
276
    VLOG(10) << ss.str();
277 278 279
  }
};

280
class CoalesceTensorOp : public framework::OperatorWithKernel {
281 282 283
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

284 285 286 287 288 289
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->IsRuntime()) {
      return;
    }
    auto use_align = ctx->Attrs().Get<bool>("use_align");
    auto align_size = ctx->Attrs().Get<int>("align_size");
290
    auto size_of_dtype = ctx->Attrs().Get<int>("user_defined_size_of_dtype");
291 292 293

    auto dtype = static_cast<framework::proto::VarType::Type>(
        ctx->Attrs().Get<int>("dtype"));
294 295 296
    if (size_of_dtype == -1) {
      size_of_dtype = framework::SizeOfType(dtype);
    }
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

    auto alignment = [](size_t size, size_t align_size) {
      size_t remaining = size % align_size;
      auto aligned_size =
          remaining == 0 ? size : size + (align_size - remaining);
      VLOG(4) << remaining << " " << size << " " << align_size << " "
              << aligned_size;
      return aligned_size;
    };
    VLOG(4) << "align_size: " << align_size;
    if (use_align && align_size > 0) {
      int64_t numel = 0;
      auto dims = ctx->GetInputsDim("Input");
      for (const auto &dim : dims) {
        auto size = framework::product(dim);
        auto len = use_align
                       ? alignment(static_cast<size_t>(size) * size_of_dtype,
                                   align_size) /
                             size_of_dtype
                       : static_cast<size_t>(size);
        numel += len;
      }
      ctx->SetOutputDim("FusedOutput", framework::make_ddim({numel}));
      VLOG(4) << "FusedOutput size:" << framework::make_ddim({numel});
    }
  }
323 324 325 326 327 328 329 330 331

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
332 333
};

334
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
335 336 337 338
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
339
             " coalesce_tensor operator.")
340 341 342
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
343
              "tensors of coalesce_tensor operator. And the address "
344 345 346 347 348
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
349
              "of coalesce_tensor operator. And the tensors of"
350
              " Output is sliced from the tensor of FusedOutput.");
351
    AddAttr<int>("dtype", "The output data type.");
352 353 354 355 356
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
357 358 359
    AddAttr<bool>("persist_output",
                  "Whether to persist the original Output value.")
        .SetDefault(false);
360 361 362 363 364 365 366 367
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
368 369 370 371
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
372 373
    AddAttr<int>("align_size", "The alignment size when use_align is True")
        .SetDefault(-1);
374 375 376 377 378 379 380 381 382
    AddAttr<int>("user_defined_size_of_dtype",
                 "The user defined size of dtype. This is used to coalesce "
                 "grad vars and merged_grad vars at the same time. For some "
                 "strategy, the dtype of fused_grad_vars and the dtype of "
                 "fused_grad_merged_vars are not identical, which will cause "
                 "the shape of these two coalesced vars are different. To "
                 "make sure the shape of these two vars are identical with "
                 "each other, this attr is added.")
        .SetDefault(-1);
383
    AddComment(R"DOC(
384
CoalesceTensor Operator.
385

386
coalesce_tensor is used to make the address of Output
387 388 389 390 391 392 393 394
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
395
coalesce_tensor allows copying the value of Input to Output, or
396 397
setting the Output with a constant value, or persist the original Output
value.
398 399 400 401 402 403 404 405

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

406 407
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
408
namespace ops = paddle::operators;
409
namespace plat = paddle::platform;
410
REGISTER_OP_CPU_KERNEL(
411
    coalesce_tensor,
412 413 414
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
415

416
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
417
REGISTER_OP_CUDA_KERNEL(
418
    coalesce_tensor,
419 420 421 422 423
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
424
#endif
425

426 427 428 429 430 431 432 433 434 435
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_CUDA_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::NPUDeviceContext, double>);
#endif

W
WangXi 已提交
436 437 438 439 440 441 442 443 444 445
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::XPUDeviceContext, double>);
#endif

446 447 448 449 450 451 452 453 454 455
#if defined(PADDLE_WITH_ASCEND_CL)
REGISTER_OP_NPU_KERNEL(
    coalesce_tensor,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
#endif

456 457 458 459 460 461 462 463 464
REGISTER_OP_VERSION(coalesce_tensor)
    .AddCheckpoint(
        R"ROC(
              Upgrade coalesce_tensor: add a new attribute [use_align].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_align",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is true to be compatible "
            "with before.",
465 466 467 468 469 470 471 472 473 474 475
            true))
    .AddCheckpoint(
        R"ROC(
                Upgrade coalesce_tensor: add a new attribute [align_size].)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "align_size",
            "In order to optionally take memory alignment into account when "
            "coalescing tensors. The default value is -1 and use the default "
            "align_size "
            "of each place to be compatible with before.",
            -1));