coalesce_tensor_op.cc 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16 17 18 19 20
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/operators/math/math_function.h"
21
#include "paddle/fluid/platform/device_memory_aligment.h"
22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
27
class CoalesceTensorOpKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext &context) const override {
H
hong 已提交
30 31
    auto in_var_names = context.InputNames("Input");
    auto out_var_names = context.OutputNames("Output");
32 33 34
    auto &in_vars = context.MultiInputVar("Input");
    auto out_vars = context.MultiOutputVar("Output");

35
    PADDLE_ENFORCE_GT(in_var_names.size(), static_cast<size_t>(0),
36 37 38 39 40 41 42 43
                      platform::errors::InvalidArgument(
                          "The CoalesceTensor operator has no input."));
    PADDLE_ENFORCE_EQ(in_var_names.size(), out_var_names.size(),
                      platform::errors::InvalidArgument(
                          "The number of CoalesceTensor operator's input and "
                          "output is not match, "
                          "input number is %u, output number is %u.",
                          in_var_names.size(), out_var_names.size()));
44

45
    // Input & Output check: only support LoDTensor
46
    for (size_t i = 0; i < in_var_names.size(); ++i) {
47 48
      PADDLE_ENFORCE_NOT_NULL(
          in_vars[i],
49 50 51
          platform::errors::NotFound("The input variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     in_var_names[i]));
52 53
      PADDLE_ENFORCE_NOT_NULL(
          out_vars[i],
54 55 56 57 58 59 60 61 62 63 64 65 66
          platform::errors::NotFound("The output variable %s of CoalesceTensor "
                                     "operator does not exist.",
                                     out_var_names[i]));
      PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The input variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
      PADDLE_ENFORCE_EQ(out_vars[i]->IsType<framework::LoDTensor>(), true,
                        platform::errors::InvalidArgument(
                            "The output variable %s of CoalesceTensor operator "
                            "is not LoDTensor.",
                            in_var_names[i]));
67 68 69
    }

    auto in_tensors = context.MultiInput<framework::LoDTensor>("Input");
70
    bool use_align = context.Attr<bool>("use_align");
71 72 73

    if (context.Attr<bool>("check_name")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
74 75
        PADDLE_ENFORCE_EQ(
            in_var_names[i], out_var_names[i],
76 77 78 79
            platform::errors::InvalidArgument(
                "The input and output variable of CoalesceTensor operator is "
                "different, %dth input is %s, %dth output is %s.",
                i, in_var_names[i], i, out_var_names[i]));
80 81 82 83 84 85 86 87 88 89 90 91 92
      }
    } else {
      // Init the output as input
      for (size_t i = 0; i < in_tensors.size(); ++i) {
        out_vars[i]->GetMutable<framework::LoDTensor>()->Resize(
            in_tensors[i]->dims());
      }
    }

    auto &dev_ctx = context.template device_context<DeviceContext>();

    // Get numel and dtype
    size_t numel = 0;
93 94 95 96
    auto dtype = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    size_t size_of_dtype = framework::SizeOfType(dtype);
    GetMemSizeAndDtype(in_tensors, in_var_names, &numel, size_of_dtype,
97
                       context.GetPlace(), use_align);
98 99 100 101 102 103 104 105

    // Alloc the continuous space
    auto fused_tensor = context.Output<framework::LoDTensor>("FusedOutput");
    fused_tensor->Resize(framework::make_ddim({static_cast<int64_t>(numel)}))
        .mutable_data(context.GetPlace(), dtype);

    // Init the continuous space
    auto out_tensors = context.MultiOutput<framework::LoDTensor>("Output");
C
chengduo 已提交
106
    size_t offset = 0;
107 108
    if (context.Attr<bool>("copy_data")) {
      for (size_t i = 0; i < in_var_names.size(); ++i) {
C
chengduo 已提交
109 110 111 112
        size_t len = static_cast<size_t>(in_tensors[i]->numel());
        auto sub_tensor = fused_tensor->Slice(
            static_cast<int64_t>(offset), static_cast<int64_t>(offset + len));
        framework::TensorCopy(*in_tensors[i], context.GetPlace(), dev_ctx,
113
                              &sub_tensor);
C
chengduo 已提交
114

115 116 117 118 119
        offset +=
            use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
120 121 122 123 124 125 126 127 128
      }
    } else if (context.Attr<bool>("set_constant")) {
      math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, fused_tensor,
                   static_cast<T>(context.Attr<float>("constant")));
    }

    // Make the outputs point to the continuous space.
    offset = 0;
129 130
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
131
    for (size_t i = 0; i < out_tensors.size(); ++i) {
C
chengduo 已提交
132
      size_t len = static_cast<size_t>(out_tensors[i]->numel());
133 134
      auto dim = out_tensors[i]->dims();
      out_tensors[i]
C
chengduo 已提交
135 136
          ->ShareDataWith(fused_tensor->Slice(
              static_cast<int64_t>(offset), static_cast<int64_t>(offset + len)))
137
          .Resize(dim);
138 139 140 141
      len = use_align
                ? platform::Alignment(len * size_of_dtype, context.GetPlace()) /
                      size_of_dtype
                : len;
142
      offset += len;
143 144
      ss << "output(" << out_var_names[i] << ")  dim:(" << dim << ")"
         << " address: " << out_tensors[i]->data<void>() << ", ";
145
    }
146
    VLOG(10) << ss.str();
147 148
  }

C
chengduo 已提交
149
 private:
150 151 152
  void GetMemSizeAndDtype(
      const std::vector<const framework::LoDTensor *> &lod_tensors,
      const std::vector<std::string> var_names, size_t *numel,
153 154
      const size_t &size_of_dtype, const platform::Place &place,
      const bool use_align = true) const {
155 156 157 158 159 160
    PADDLE_ENFORCE_EQ(
        lod_tensors.size(), var_names.size(),
        platform::errors::InvalidArgument(
            "The number of input tensor and variable does not match, the "
            "number of input tensor is %u, the number of input variable is %u.",
            lod_tensors.size(), var_names.size()));
161
    *numel = 0;
162 163
    std::stringstream ss;
    ss << "alloc_space_for_vars: ";
164
    for (size_t i = 0; i < var_names.size(); ++i) {
165
      PADDLE_ENFORCE_EQ(lod_tensors[i]->IsInitialized(), true,
166 167
                        platform::errors::InvalidArgument(
                            "Tensor `%s` is not initialized.", var_names[i]));
168 169

      auto size = lod_tensors[i]->numel();
170 171 172 173
      PADDLE_ENFORCE_GT(
          size, 0,
          platform::errors::InvalidArgument(
              "The number of tensor `%s`'s elements is 0.", var_names[i]));
174
      ss << "input(" << var_names[i] << ") dim:(" << lod_tensors[i]->dims()
175 176
         << ") "
         << " addres:" << lod_tensors[i]->data<void>() << ", ";
177 178 179 180 181
      *numel += use_align
                    ? platform::Alignment(
                          static_cast<size_t>(size) * size_of_dtype, place) /
                          size_of_dtype
                    : static_cast<size_t>(size);
182
    }
183 184

    VLOG(10) << ss.str();
185 186 187
  }
};

188
class CoalesceTensorOp : public framework::OperatorWithKernel {
189 190 191 192
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {}
193 194 195 196 197 198 199 200 201

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
202 203
};

204
class CoalesceTensorOpMaker : public framework::OpProtoAndCheckerMaker {
205 206 207 208
 public:
  void Make() override {
    AddInput("Input",
             "(vector<LoDTensor>) The input tensors of"
209
             " coalesce_tensor operator.")
210 211 212
        .AsDuplicable();
    AddOutput("Output",
              "(vector<LoDTensor>) The output "
213
              "tensors of coalesce_tensor operator. And the address "
214 215 216 217 218
              "of output tensors are continuous, they are sliced from the "
              "tensor of FusedOutput.")
        .AsDuplicable();
    AddOutput("FusedOutput",
              "(LoDTensor) The output tensor "
219
              "of coalesce_tensor operator. And the tensors of"
220
              " Output is sliced from the tensor of FusedOutput.");
221
    AddAttr<int>("dtype", "The output data type.");
222 223 224 225 226 227 228 229 230 231 232 233 234
    AddAttr<bool>("copy_data", "Whether to copy the Input value to Output.")
        .SetDefault(false);
    AddAttr<bool>("set_constant",
                  "Whether to set the Output with a constant value.")
        .SetDefault(false);
    AddAttr<float>("constant",
                   "If set_constant is true, the constant value will be used "
                   "to set the Output.")
        .SetDefault(0.0);
    AddAttr<bool>("check_name",
                  "Whether to check the name of Input and Output to ensure "
                  "they are the same separately.")
        .SetDefault(false);
235 236 237 238
    AddAttr<bool>("use_align",
                  "Whether to consider memory chunk and take alignment into "
                  "account for inputs and outputs.")
        .SetDefault(true);
239
    AddComment(R"DOC(
240
CoalesceTensor Operator.
241

242
coalesce_tensor is used to make the address of Output
243 244 245 246 247 248 249 250
continuous according to the Input. This Op will alloc a big tensor
according to the tensors of Input, the dtype is the same with those input tensors,
the size is the sum of those input tensors' numel, and the dim of the big
tensor is {sum(numel)}. And the big tensor is stored in FusedOutput.
The tensors of Output are sliced from the tensor of FusedOutput.
Note that, the dtype of Input should be the same, and the dim of Input
and Output should equal.
The tensors of Input and Output could be the same or different. And
251
coalesce_tensor allows copying the value of Input to Output, or
252 253 254 255 256 257 258 259 260
setting the Output with a constant value.

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

261 262
REGISTER_OPERATOR(coalesce_tensor, paddle::operators::CoalesceTensorOp,
                  paddle::operators::CoalesceTensorOpMaker);
263
namespace ops = paddle::operators;
264
namespace plat = paddle::platform;
265
REGISTER_OP_CPU_KERNEL(
266
    coalesce_tensor,
267 268 269
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CPUDeviceContext, double>);
270 271 272

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL(
273
    coalesce_tensor,
274 275 276 277 278
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext,
                                plat::float16>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CoalesceTensorOpKernel<paddle::platform::CUDADeviceContext, double>);
279
#endif