io.py 45.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
__all__ = [
Y
yuyang 已提交
33
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
34 35
    'random_data_generator', 'py_reader', 'create_py_reader_by_data',
    'Preprocessor', 'load'
Y
Yu Yang 已提交
36
]
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
47
    **Data Layer**
Y
Yu Yang 已提交
48

K
kavyasrinet 已提交
49
    This function takes in the input and based on whether data has
C
caoying03 已提交
50
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
51
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
52
    following operators in the graph.
Y
Yu Yang 已提交
53 54 55 56

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
57 58
    Args:
       name(str): The name/alias of the function
S
sneaxiy 已提交
59 60 61 62
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
                    True and there is no -1 inside :code:`shape`, it should be 
                    considered as the shape of the each sample. Otherwise, it
                    should be considered as the shape of the batched data.  
X
Xin Pan 已提交
63 64
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
65 66 67 68 69 70
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
71
       dtype(np.dtype|VarType|str): The type of data : float32, float16, int etc
K
kavyasrinet 已提交
72 73 74 75 76 77 78 79 80 81 82
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
83 84 85
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
86
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
87 88 89 90 91 92 93 94 95
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
96
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
97 98 99 100 101
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
102 103
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
104
    return data_var
T
typhoonzero 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
130
    **ListenAndServ Layer**
T
typhoonzero 已提交
131

Y
yi.wu 已提交
132 133 134 135 136 137 138 139 140
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
141

Y
yi.wu 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
157 158
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
159 160
    """

Y
Yancey1989 已提交
161
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
162
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
163
        self.inputs = inputs
T
typhoonzero 已提交
164 165 166
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
167 168
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
169
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
183 184 185 186 187 188 189 190
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
191 192
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
193 194 195

        return params, grads

T
typhoonzero 已提交
196 197 198 199 200 201 202
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
203 204 205 206 207 208
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
209
            type='listen_and_serv',
Y
Yancey1989 已提交
210
            inputs={"X": self.inputs},
T
typhoonzero 已提交
211 212 213 214
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
215 216 217
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
218
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
219
                'grad_to_block_id': [""]
T
typhoonzero 已提交
220 221 222
            })


223
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
224
    """
Y
yi.wu 已提交
225 226
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
227 228

    Args:
Y
yi.wu 已提交
229
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
230
                   of send_vars to send
Y
yi.wu 已提交
231 232
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
233 234 235 236

    """
    assert (type(send_vars) == list)

237 238 239 240 241 242 243
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
244
    epmap = endpoints.split(",")
T
typhoonzero 已提交
245
    endpoints = list(set(epmap))
T
typhoonzero 已提交
246 247

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
248
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
249

T
typhoonzero 已提交
250 251 252
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
253
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
254 255 256 257 258
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
259
    if sync:
W
Wu Yi 已提交
260 261 262 263 264
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
265 266


267
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
268
    """
Y
yi.wu 已提交
269
    Receive variables from server side
270 271

    Args:
Y
yi.wu 已提交
272
        endpoints (str): comma seperated IP:PORT pairs in the order
273
                   of send_vars to send
Y
yi.wu 已提交
274 275
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
276

Y
yi.wu 已提交
277 278
    Returns:
        list: list of received variables
279 280 281
    """
    assert (type(get_vars) == list)

282 283 284 285 286 287 288
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

289 290 291 292 293 294
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
295
        inputs={"X": dummy_input},
296 297 298
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
299
    if sync:
W
Wu Yi 已提交
300 301 302 303
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
304
    return get_vars
Y
Yu Yang 已提交
305 306


Y
Refine  
Yu Yang 已提交
307 308 309 310 311 312 313 314 315 316
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
317 318
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
319 320 321
    return reader


Y
Yu Yang 已提交
322 323 324 325
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
326
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
327
    new_var.persistable = True
F
fengjiayi 已提交
328 329 330 331
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
348
    new_op = block.append_op(
F
fengjiayi 已提交
349 350 351
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
352
        attrs=op.all_attrs())
F
fengjiayi 已提交
353
    return new_op
Y
Yu Yang 已提交
354 355


W
wopeizl 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
                       for_parallel=True):
    """
    ${comment}

    Args:
       filename(${filename_type}): ${filename_comment}.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
       dtypes(list): List of strs which declaring data type.
       pass_num(int): Number of passes to run.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       ${out_comment}.

    Examples:

        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
383
        >>>                               shapes=[(3,224,224), (1,)],
W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })
Y
Yu Yang 已提交
410

W
wopeizl 已提交
411 412 413 414
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
415

W
wopeizl 已提交
416 417
    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
F
fengjiayi 已提交
418

W
wopeizl 已提交
419
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
420 421


F
fengjiayi 已提交
422 423 424 425 426
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
427 428 429
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

445
        .. code-block:: python
F
fengjiayi 已提交
446

447 448 449 450 451 452 453
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Q
Qiao Longfei 已提交
486 487 488 489 490 491
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
492
               feed_list=None):
493

Q
Qiao Longfei 已提交
494 495 496 497 498 499 500 501 502 503
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
504 505 506 507 508 509
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
532
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
Q
Qiao Longfei 已提交
533 534 535 536

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
537
        type='create_py_reader',
Q
Qiao Longfei 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
                feed_queue.close()
                raise ex
Q
Qiao Longfei 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
613
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
614 615 616 617 618 619 620
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
621
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
638 639 640

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
641 642 643 644 645
    reader.start = __start__

    return reader


Y
yuyang18 已提交
646 647 648 649 650
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
651
              use_double_buffer=True):
S
sneaxiy 已提交
652
    """
653
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
654

655
    This layer returns a Reader Variable.
656 657
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
658 659 660 661 662
    source. More details :ref:`user_guide_use_py_reader_en` .  When
    :code:`Executor::Run()` is invoked in C++ side, the data from the generator
    would be read automatically. Unlike :code:`DataFeeder.feed()`, the data
    reading process and :code:`Executor::Run()` process can run in parallel
    using :code:`py_reader`. The :code:`start()` method of the Reader should be
663 664 665
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
666 667

    Args:
668
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
669 670 671 672 673
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
674
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
675 676

    Returns:
677
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
678 679

    Examples:
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
             # user defined network, here a softmax regresssion example
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
                 try:
                     while True:
                         exe.run(fetch_list=[loss.name])
                 except fluid.core.EOFException:
                     reader.reset()

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
                 paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                       buf_size=500))
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
788
    """
Q
Qiao Longfei 已提交
789 790 791 792 793 794
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
795
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
796 797


Q
Qiao Longfei 已提交
798 799 800 801 802 803
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
804

Q
Qiao Longfei 已提交
805
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
806

Q
Qiao Longfei 已提交
807 808
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
809

Q
Qiao Longfei 已提交
810 811 812 813 814 815
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
816

Q
Qiao Longfei 已提交
817 818
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
819

Q
Qiao Longfei 已提交
820
    Examples:
821
       .. code-block:: python
Q
Qiao Longfei 已提交
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(img, label):
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
         label = fluid.layers.data(name='label', shape=[1], dtype='int64')
         reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                        feed_list=[image, label])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=500))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)  # some network definition

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())

         exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
         for epoch_id in range(10):
             reader.start()
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
Q
Qiao Longfei 已提交
854 855 856 857 858 859 860 861 862
    """
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
863 864


865 866 867 868
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
869
               thread_num=None,
F
fengjiayi 已提交
870 871
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
872
               is_test=None):
F
fengjiayi 已提交
873 874 875
    """
    Open files

876 877 878
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
879 880 881 882 883 884

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
885 886 887
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
888
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
889 890 891 892
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
893 894 895 896 897 898 899

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

900
         import paddle.fluid. as fluid
F
fengjiayi 已提交
901
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
902
                                                     './data2.recordio'],
903
                                             shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
904
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
905
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
906 907

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
908
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
909
    """
Y
yuyang18 已提交
910 911 912 913 914 915 916 917 918
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
919

M
minqiyang 已提交
920
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
921
        filenames = [filenames]
F
fengjiayi 已提交
922 923 924 925 926 927 928 929
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
930
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
931
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
932
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
933 934 935 936
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
937 938 939
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
940 941 942
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
943
    startup_blk.append_op(
Y
yuyang18 已提交
944
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
945

F
fengjiayi 已提交
946 947 948 949 950 951 952
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
953

F
fengjiayi 已提交
954 955 956
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
957
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
958 959 960
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
961
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
962 963 964 965 966
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
967 968 969 970
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
971 972


973 974
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
975 976 977 978 979 980 981 982 983 984
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
985
def shuffle(reader, buffer_size):
986
    """
T
Tink_Y 已提交
987 988 989 990 991 992
    Creates a data reader whose data output is shuffled.
    Output from the iterator that created by original reader will be
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

    Args:
H
haowang101779990 已提交
993 994 995 996 997
        reader(callable): the original reader whose output will be shuffled.
        buf_size(int): shuffle buffer size.

    Returns:
        callable: the new reader whose output is shuffled.
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1,)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)
            shuffle_reader = fluid.layers.shuffle(reader=batch_reader, buffer_size=5000)
1011
    """
1012 1013
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
1014 1015


J
JiayiFeng 已提交
1016
def batch(reader, batch_size):
F
fengjiayi 已提交
1017
    """
1018 1019 1020
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
1035
                                                    shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
1045
            #
F
fengjiayi 已提交
1046 1047
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
1048 1049
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
1050 1051
            # of an instance.
    """
J
JiayiFeng 已提交
1052 1053 1054 1055
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


1056
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

F
flame 已提交
1074 1075
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.open_files(filenames=['mnist.recordio'],
Y
yuyang18 已提交
1076 1077 1078 1079 1080
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
1081 1082 1083
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
1084 1085
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
1086 1087


F
fengjiayi 已提交
1088
def multi_pass(reader, pass_num):
1089 1090
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
1091 1092


F
fengjiayi 已提交
1093
def read_file(reader):
F
fengjiayi 已提交
1094
    """
F
fengjiayi 已提交
1095
    Execute the given reader and get data via it.
F
fengjiayi 已提交
1096

1097 1098
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
1099 1100 1101 1102
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
1103
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
1104 1105

    Returns:
F
fengjiayi 已提交
1106
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
1107 1108 1109

    Examples:
        .. code-block:: python
1110 1111
          
           import paddle.fluid as fluid
F
fengjiayi 已提交
1112 1113 1114 1115 1116
           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
1117
           data_file = fluid.layers.double_buffer(
F
fengjiayi 已提交
1118
                fluid.layers.batch(data_file, batch_size=64))
1119
           input, label = fluid.layers.read_file(data_file)
F
fengjiayi 已提交
1120
    """
Y
Yu Yang 已提交
1121 1122
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
1123
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
1124
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
1125
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
1126 1127
    ]
    helper.append_op(
F
fengjiayi 已提交
1128
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
1129 1130 1131 1132
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
1133 1134 1135


class Preprocessor(object):
X
Xin Pan 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1145

1146 1147 1148 1149 1150 1151
           reader = fluid.layers.io.open_files(
               filenames=['./data1.recordio', './data2.recordio'],
               shapes=[(3, 224, 224), (1, )],
               lod_levels=[0, 0],
               dtypes=['float32', 'int64']) 

X
Xin Pan 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1178
    def _is_completed(self):
F
fengjiayi 已提交
1179 1180
        return self.sub_block and self.source_var_names and self.sink_var_names

S
rename  
sneaxiy 已提交
1181
    @signature_safe_contextmanager
F
fengjiayi 已提交
1182 1183
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1184
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1185
        yield
W
Wu Yi 已提交
1186
        self.main_prog._rollback()
F
fengjiayi 已提交
1187
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1188
        if not self._is_completed():
F
fengjiayi 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1204 1205
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1206
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1207
        ]
F
fengjiayi 已提交
1208
        source_vars = []
F
fengjiayi 已提交
1209 1210 1211
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1212
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1213
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)