test_dataset.py 42.9 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19

from __future__ import print_function
20
import paddle
X
xjqbest 已提交
21
import paddle.fluid as fluid
22
import paddle.compat as cpt
23
import paddle.fluid.core as core
X
xjqbest 已提交
24 25 26
import numpy as np
import os
import shutil
27
import tempfile
X
xjqbest 已提交
28 29 30 31
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
32
    """  TestCases for Dataset. """
33

Z
Zeng Jinle 已提交
34 35 36 37 38
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
39
    def test_dataset_create(self):
X
xjqbest 已提交
40
        """ Testcase for dataset create. """
X
xjqbest 已提交
41
        try:
42
            dataset = paddle.distributed.InMemoryDataset()
X
xjqbest 已提交
43 44 45 46
        except:
            self.assertTrue(False)

        try:
47
            dataset = paddle.distributed.QueueDataset()
X
xjqbest 已提交
48 49 50
        except:
            self.assertTrue(False)

51
        try:
52
            dataset = paddle.distributed.fleet.dataset.FileInstantDataset()
53 54 55
        except:
            self.assertTrue(False)

X
xjqbest 已提交
56
        try:
57
            dataset = paddle.distributed.fleet.dataset.MyOwnDataset()
X
xjqbest 已提交
58 59 60 61
            self.assertTrue(False)
        except:
            self.assertTrue(True)

62 63 64 65 66 67 68
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
69
        dataset._set_trainer_num(1)
70 71
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)
72
        self.assertEqual(dataset.trainer_num, 1)
73

74 75 76 77 78 79 80 81
    def test_shuffle_by_uid(self):
        """
        Testcase for shuffle_by_uid.
        """
        dataset = paddle.distributed.InMemoryDataset()
        dataset._set_uid_slot('6048')
        dataset._set_shuffle_by_uid(True)

82 83 84 85
    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
86 87 88 89 90 91

        temp_dir = tempfile.TemporaryDirectory()
        dump_a_path = os.path.join(temp_dir.name, 'test_run_with_dump_a.txt')
        dump_b_path = os.path.join(temp_dir.name, 'test_run_with_dump_b.txt')

        with open(dump_a_path, "w") as f:
92 93 94 95
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
96
        with open(dump_b_path, "w") as f:
97 98 99 100 101 102 103 104 105 106 107 108 109
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

110 111 112 113 114 115 116 117 118
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset.update_settings(pipe_command="cat1")
        dataset._init_distributed_settings(
            parse_ins_id=True,
            parse_content=True,
            fea_eval=True,
            candidate_size=10000)
119
        dataset.set_filelist([dump_a_path, dump_b_path])
120 121 122
        dataset.load_into_memory()
        dataset.local_shuffle()

123 124 125 126 127 128
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
129 130
        for i in range(2):
            try:
131
                exe.train_from_dataset(main_program, dataset)
132 133 134 135 136
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

137
        temp_dir.cleanup()
138

X
xjqbest 已提交
139
    def test_dataset_config(self):
X
xjqbest 已提交
140
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
141 142 143 144 145
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
146
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
147
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        filename1 = "afs:test_in_memory_dataset_run_a.txt"
        filename2 = "afs:test_in_memory_dataset_run_b.txt"
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

193 194 195 196 197 198 199
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32,
            thread_num=3,
            pipe_command="cat",
            download_cmd="cat",
            use_var=slots_vars)
200 201
        dataset.set_filelist([filename1, filename2])
        dataset.load_into_memory()
202 203 204 205 206
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
207
        exe = fluid.Executor(fluid.CPUPlace())
208
        exe.run(startup_program)
209 210 211 212 213 214
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
215
                    exe.run(main_program, feed=data)
216 217 218
        else:
            for i in range(self.epoch_num):
                try:
219
                    exe.train_from_dataset(main_program, dataset)
220 221 222 223 224 225
                except Exception as e:
                    self.assertTrue(False)

        os.remove(filename1)
        os.remove(filename2)

X
xjqbest 已提交
226
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
227
        """
X
xjqbest 已提交
228
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
229 230
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
231 232 233 234
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
235
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
236 237 238 239 240 241
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

242
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
243 244
        slots_vars = []
        for slot in slots:
245 246
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
247 248
            slots_vars.append(var)

249 250 251 252
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(fea_eval=True, candidate_size=1)
253 254 255 256
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
257
        dataset.load_into_memory()
258
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
259
        dataset.local_shuffle()
260 261
        dataset._set_generate_unique_feasigns(True, 15)
        dataset._generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
262 263
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
278

X
xjqbest 已提交
279 280
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="int64", lod_level=1)
                slots_vars.append(var)
            for slot in slots[2:]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)

318 319 320 321
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

340 341
        #dataset._set_merge_by_lineid(2)
        dataset.update_settings(merge_size=2)
342 343 344 345 346
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch_b.txt")

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch1_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch1_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            var1 = fluid.layers.data(
                name="slot1", shape=[1], dtype="int64", lod_level=0)
            var2 = fluid.layers.data(
                name="slot2", shape=[1], dtype="int64", lod_level=0)
            var3 = fluid.layers.data(
                name="slot3", shape=[1], dtype="float32", lod_level=0)
            var4 = fluid.layers.data(
                name="slot4", shape=[1], dtype="float32", lod_level=0)
            slots_vars = [var1, var2, var3, var4]

383 384 385 386
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

405
        dataset._set_merge_by_lineid(2)
406 407 408 409 410
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch1_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch1_b.txt")

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

436 437 438
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
439 440 441 442 443 444 445 446 447 448
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
482

483 484 485
        dataset._set_merge_by_lineid(2)
        dataset._set_parse_ins_id(False)
        dataset._set_fleet_send_sleep_seconds(2)
486 487 488 489
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
490
        dataset.dataset.merge_by_lineid()
491 492
        dataset._set_merge_by_lineid(30)
        dataset._set_parse_ins_id(False)
493 494
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
        dataset.update_settings(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=[],
            fs_name="",
            fs_ugi="",
            download_cmd="cat",
            merge_size=-1,
            parse_ins_id=False,
            parse_content=False,
            fleet_send_batch_size=2,
            fleet_send_sleep_seconds=2,
            fea_eval=True)
510
        fleet_ptr = fluid.core.Fleet()
511
        fleet_ptr.set_client2client_config(1, 1, 1)
512
        fleet_ptr.get_cache_threshold(0)
513

514 515 516
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
517
    def test_queue_dataset_run(self):
X
xjqbest 已提交
518
        """
X
xjqbest 已提交
519
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
520 521
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
522 523 524 525
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
526
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
527 528 529 530 531 532
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

533
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
534 535
        slots_vars = []
        for slot in slots:
536 537
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
538 539
            slots_vars.append(var)

540 541 542
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
543 544
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
545 546 547

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
562

563 564 565
        dataset2 = paddle.distributed.QueueDataset()
        dataset2.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
566 567 568 569 570 571 572 573
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

574 575 576 577
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
578

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

604 605 606
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
607 608 609
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

628 629 630 631
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.data(
                name=slot, shape=[None, 1], dtype="int64", lod_level=1)
            slots_vars.append(var)

659 660 661 662 663 664 665
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=slots_vars)
666 667 668 669
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.load_into_memory()

670 671 672
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
687

688 689 690 691
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
692

X
xjqbest 已提交
693

Z
Zeng Jinle 已提交
694
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
695 696 697 698
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
699
    def setUp(self):
X
xujiaqi01 已提交
700 701 702
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
703 704 705 706 707
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


708
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
709 710 711 712
    """
    Test Dataset With Fetch Handler. TestCases.
    """

713
    def net(self):
X
xujiaqi01 已提交
714 715 716
        """
        Test Dataset With Fetch Handler. TestCases.
        """
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
734 735 736 737 738 739 740
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
741 742 743
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=inputs)
744 745 746 747
        dataset.set_filelist(files)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
748 749 750
        """
        Test Dataset With Fetch Handler. TestCases.
        """
751 752 753 754 755 756 757 758 759 760 761 762 763
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
764 765 766
        """
        Test Dataset With Fetch Handler. TestCases.
        """
767 768 769 770
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
X
xujiaqi01 已提交
771 772 773
        """
        Test Dataset With Fetch Handler. TestCases.
        """
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
793 794 795
        """
        Test Dataset With Fetch Handler. TestCases.
        """
796 797 798 799 800 801 802 803 804 805 806 807 808 809
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

837

X
xujiaqi01 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
851 852 853

        self.skipTest("parameter server will add pslib UT later")

X
xujiaqi01 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
        with open("test_in_memory_dataset2_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
869
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
884
                fleet.init()
X
xujiaqi01 已提交
885 886 887 888 889 890 891 892 893 894 895
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
896 897 898 899 900 901 902
            dataset = paddle.distributed.InMemoryDataset()

            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
            dataset.set_filelist([
                "test_in_memory_dataset2_run_a.txt",
                "test_in_memory_dataset2_run_b.txt"
            ])
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run_a.txt")
        os.remove("./test_in_memory_dataset2_run_b.txt")

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
933
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
948
                fleet.init()
X
xujiaqi01 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
967 968 969 970 971 972
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
973 974 975 976 977
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
X
xujiaqi01 已提交
978 979 980 981
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
982 983
            fleet._opt_info = None
            fleet._fleet_ptr = None
984 985
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(fs_name="", fs_ugi="")
986
            d = paddle.distributed.fleet.DatasetBase()
987
            try:
988
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
1008
            dataset._set_fleet_send_batch_size(1024)
1009 1010 1011 1012
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1013
            #dataset.get_pv_data_size()
1014 1015
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1016
            dataset = paddle.distributed.QueueDataset()
1017 1018 1019 1020 1021 1022 1023 1024
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1025
            dataset = paddle.distributed.fleet.FileInstantDataset()
1026 1027 1028 1029 1030 1031 1032 1033
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1034 1035 1036 1037

        os.remove("./test_in_memory_dataset2_run2_a.txt")
        os.remove("./test_in_memory_dataset2_run2_b.txt")

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
    def test_bosps_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
                fleet.init()
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
            fleet._opt_info = None
            fleet._fleet_ptr = None
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                rank_offset="",
                pv_batch_size=1,
                fs_name="",
                fs_ugi="",
                data_feed_type="MultiSlotInMemoryDataFeed",
                parse_logkey=True,
                merge_by_sid=True,
                enable_pv_merge=True)
            d = paddle.distributed.fleet.DatasetBase()
            try:
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset._set_parse_logkey(True)
            dataset._set_merge_by_sid(True)
            dataset._set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset._set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            #dataset.get_pv_data_size()
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()

X
xujiaqi01 已提交
1152

X
xjqbest 已提交
1153
if __name__ == '__main__':
X
xjqbest 已提交
1154
    unittest.main()