test_dataset.py 38.2 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19

from __future__ import print_function
20
import paddle
X
xjqbest 已提交
21
import paddle.fluid as fluid
22
import paddle.compat as cpt
23
import paddle.fluid.core as core
X
xjqbest 已提交
24 25 26 27 28 29 30
import numpy as np
import os
import shutil
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
31
    """  TestCases for Dataset. """
32

Z
Zeng Jinle 已提交
33 34 35 36 37
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
38
    def test_dataset_create(self):
X
xjqbest 已提交
39
        """ Testcase for dataset create. """
X
xjqbest 已提交
40
        try:
41 42
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "InMemoryDataset")
X
xjqbest 已提交
43 44 45 46
        except:
            self.assertTrue(False)

        try:
47 48
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "QueueDataset")
X
xjqbest 已提交
49 50 51
        except:
            self.assertTrue(False)

52
        try:
53
            dataset = paddle.fleet.DatasetFactory().create_dataset(
54 55 56 57
                "FileInstantDataset")
        except:
            self.assertTrue(False)

X
xjqbest 已提交
58
        try:
59 60
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "MyOwnDataset")
X
xjqbest 已提交
61 62 63 64
            self.assertTrue(False)
        except:
            self.assertTrue(True)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)

    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_run_with_dump_a.txt", "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_run_with_dump_b.txt", "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

98 99
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"])
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.set_fea_eval(10000, True)
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        os.remove("./test_run_with_dump_a.txt")
        os.remove("./test_run_with_dump_b.txt")

X
xjqbest 已提交
125
    def test_dataset_config(self):
X
xjqbest 已提交
126
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
127 128 129 130 131
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
132
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
133
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        filename1 = "afs:test_in_memory_dataset_run_a.txt"
        filename2 = "afs:test_in_memory_dataset_run_b.txt"
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

179 180
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist([filename1, filename2])
        dataset.set_pipe_command("cat")
        dataset.set_download_cmd("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

        os.remove(filename1)
        os.remove(filename2)

X
xjqbest 已提交
208
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
209
        """
X
xjqbest 已提交
210
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
211 212
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
213 214 215 216
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
217
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
218 219 220 221 222 223
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

224
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
225 226
        slots_vars = []
        for slot in slots:
227 228
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
229 230
            slots_vars.append(var)

231 232
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
X
xjqbest 已提交
233 234
        dataset.set_batch_size(32)
        dataset.set_thread(3)
235 236 237 238
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
239 240 241
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
242
        dataset.set_fea_eval(1, True)
243
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
244
        dataset.local_shuffle()
245 246
        dataset.set_generate_unique_feasigns(True, 15)
        dataset.generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
247 248
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
263

X
xjqbest 已提交
264 265
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="int64", lod_level=1)
                slots_vars.append(var)
            for slot in slots[2:]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)

303 304
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        dataset.set_batch_size(32)
        dataset.set_thread(1)
        dataset.set_parse_ins_id(True)
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        dataset.set_merge_by_lineid(2)
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch_b.txt")

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch1_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch1_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            var1 = fluid.layers.data(
                name="slot1", shape=[1], dtype="int64", lod_level=0)
            var2 = fluid.layers.data(
                name="slot2", shape=[1], dtype="int64", lod_level=0)
            var3 = fluid.layers.data(
                name="slot3", shape=[1], dtype="float32", lod_level=0)
            var4 = fluid.layers.data(
                name="slot4", shape=[1], dtype="float32", lod_level=0)
            slots_vars = [var1, var2, var3, var4]

370 371
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        dataset.set_batch_size(32)
        dataset.set_thread(1)
        dataset.set_parse_ins_id(True)
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        dataset.set_merge_by_lineid(2)
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch1_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch1_b.txt")

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

426 427
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
428 429 430 431 432 433 434 435 436 437 438 439 440 441
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
475

476 477
        dataset.set_merge_by_lineid(2)
        dataset.set_parse_ins_id(False)
478
        dataset.set_fleet_send_sleep_seconds(2)
479 480 481 482 483
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.release_memory()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
484 485 486 487 488 489
        dataset.dataset.merge_by_lineid()
        dataset.release_memory()
        dataset.set_merge_by_lineid(30)
        dataset.set_parse_ins_id(False)
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
490
        fleet_ptr = fluid.core.Fleet()
491
        fleet_ptr.set_client2client_config(1, 1, 1)
492
        fleet_ptr.get_cache_threshold(0)
493

494 495 496
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
497
    def test_queue_dataset_run(self):
X
xjqbest 已提交
498
        """
X
xjqbest 已提交
499
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
500 501
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
502 503 504 505
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
506
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
507 508 509 510 511 512
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

513
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
514 515
        slots_vars = []
        for slot in slots:
516 517
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
518 519
            slots_vars.append(var)

520
        dataset = paddle.fleet.DatasetFactory().create_dataset("QueueDataset")
X
xjqbest 已提交
521 522
        dataset.set_batch_size(32)
        dataset.set_thread(3)
523 524
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
525 526 527 528 529
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
544

545
        dataset2 = paddle.fleet.DatasetFactory().create_dataset("QueueDataset")
546 547 548 549 550 551 552 553 554 555 556 557
        dataset2.set_use_var(slots_vars)
        dataset2.set_batch_size(32)
        dataset2.set_thread(3)
        dataset2.set_pipe_command("cat")
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

X
xjqbest 已提交
558 559
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

586
        dataset = paddle.fleet.DatasetFactory().create_dataset("QueueDataset")
587 588 589 590 591 592 593
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.data(
                name=slot, shape=[None, 1], dtype="int64", lod_level=1)
            slots_vars.append(var)

641 642
        dataset = paddle.fleet.DatasetFactory().create_dataset(
            "InMemoryDataset")
643 644 645 646 647 648 649 650 651
        dataset.set_input_type(1)
        dataset.set_batch_size(1)
        dataset.set_thread(2)
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.set_pipe_command("cat")
        dataset.set_use_var(slots_vars)
        dataset.load_into_memory()

652 653 654
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
669 670 671 672

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

X
xjqbest 已提交
673

Z
Zeng Jinle 已提交
674
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
675 676 677 678
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
679
    def setUp(self):
X
xujiaqi01 已提交
680 681 682
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
683 684 685 686 687
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


688
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
689 690 691 692
    """
    Test Dataset With Fetch Handler. TestCases.
    """

693
    def net(self):
X
xujiaqi01 已提交
694 695 696
        """
        Test Dataset With Fetch Handler. TestCases.
        """
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
714 715 716 717 718 719 720
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
721
        dataset = paddle.fleet.DatasetFactory().create_dataset("QueueDataset")
722 723 724 725 726 727 728 729
        dataset.set_batch_size(32)
        dataset.set_thread(3)
        dataset.set_filelist(files)
        dataset.set_pipe_command("cat")
        dataset.set_use_var(inputs)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
730 731 732
        """
        Test Dataset With Fetch Handler. TestCases.
        """
733 734 735 736 737 738 739 740 741 742 743 744 745
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
746 747 748
        """
        Test Dataset With Fetch Handler. TestCases.
        """
749 750 751 752
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
X
xujiaqi01 已提交
753 754 755
        """
        Test Dataset With Fetch Handler. TestCases.
        """
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
775 776 777
        """
        Test Dataset With Fetch Handler. TestCases.
        """
778 779 780 781 782 783 784 785 786 787 788 789 790 791
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

819

X
xujiaqi01 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
833 834 835

        self.skipTest("parameter server will add pslib UT later")

X
xujiaqi01 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        with open("test_in_memory_dataset2_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
851
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
866
                fleet.init()
X
xujiaqi01 已提交
867 868 869 870 871 872 873 874 875 876 877
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
878 879
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "InMemoryDataset")
X
xujiaqi01 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
            dataset.set_batch_size(32)
            dataset.set_thread(3)
            dataset.set_filelist([
                "test_in_memory_dataset2_run_a.txt",
                "test_in_memory_dataset2_run_b.txt"
            ])
            dataset.set_pipe_command("cat")
            dataset.set_use_var(slots_vars)
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run_a.txt")
        os.remove("./test_in_memory_dataset2_run_b.txt")

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
914
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
929
                fleet.init()
X
xujiaqi01 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
948 949
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "InMemoryDataset")
X
xujiaqi01 已提交
950 951 952 953 954 955 956 957 958
            dataset.set_batch_size(32)
            dataset.set_thread(3)
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.set_pipe_command("cat")
            dataset.set_use_var(slots_vars)
            dataset.load_into_memory()
X
xujiaqi01 已提交
959 960 961 962
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
963 964
            fleet._opt_info = None
            fleet._fleet_ptr = None
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "InMemoryDataset")
            dataset.set_rank_offset("")
            dataset.set_pv_batch_size(1)
            dataset.set_hdfs_config("", "")
            d = paddle.fleet.DatasetBase()
            try:
                dataset.set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset.set_parse_logkey(True)
            dataset.set_merge_by_sid(True)
            dataset.set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset.set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            dataset.get_pv_data_size()
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
            dataset = paddle.fleet.DatasetFactory().create_dataset(
                "QueueDataset")
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            dataset = paddle.fleet.FileInstantDataset()
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1022 1023 1024 1025 1026

        os.remove("./test_in_memory_dataset2_run2_a.txt")
        os.remove("./test_in_memory_dataset2_run2_b.txt")


X
xjqbest 已提交
1027
if __name__ == '__main__':
X
xjqbest 已提交
1028
    unittest.main()