test_dataset.py 42.2 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19

from __future__ import print_function
20
import paddle
X
xjqbest 已提交
21
import paddle.fluid as fluid
22
import paddle.compat as cpt
23
import paddle.fluid.core as core
X
xjqbest 已提交
24 25 26 27 28 29 30
import numpy as np
import os
import shutil
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
31
    """  TestCases for Dataset. """
32

Z
Zeng Jinle 已提交
33 34 35 36 37
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
38
    def test_dataset_create(self):
X
xjqbest 已提交
39
        """ Testcase for dataset create. """
X
xjqbest 已提交
40
        try:
41
            dataset = paddle.distributed.InMemoryDataset()
X
xjqbest 已提交
42 43 44 45
        except:
            self.assertTrue(False)

        try:
46
            dataset = paddle.distributed.QueueDataset()
X
xjqbest 已提交
47 48 49
        except:
            self.assertTrue(False)

50
        try:
51
            dataset = paddle.distributed.fleet.dataset.FileInstantDataset()
52 53 54
        except:
            self.assertTrue(False)

X
xjqbest 已提交
55
        try:
56
            dataset = paddle.distributed.fleet.dataset.MyOwnDataset()
X
xjqbest 已提交
57 58 59 60
            self.assertTrue(False)
        except:
            self.assertTrue(True)

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)

    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_run_with_dump_a.txt", "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_run_with_dump_b.txt", "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

94 95 96 97 98 99 100 101 102
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset.update_settings(pipe_command="cat1")
        dataset._init_distributed_settings(
            parse_ins_id=True,
            parse_content=True,
            fea_eval=True,
            candidate_size=10000)
103 104 105 106 107
        dataset.set_filelist(
            ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"])
        dataset.load_into_memory()
        dataset.local_shuffle()

108 109 110 111 112 113
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
114 115
        for i in range(2):
            try:
116
                exe.train_from_dataset(main_program, dataset)
117 118 119 120 121 122 123 124
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        os.remove("./test_run_with_dump_a.txt")
        os.remove("./test_run_with_dump_b.txt")

X
xjqbest 已提交
125
    def test_dataset_config(self):
X
xjqbest 已提交
126
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
127 128 129 130 131
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
132
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
133
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        filename1 = "afs:test_in_memory_dataset_run_a.txt"
        filename2 = "afs:test_in_memory_dataset_run_b.txt"
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

179 180 181 182 183 184 185
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32,
            thread_num=3,
            pipe_command="cat",
            download_cmd="cat",
            use_var=slots_vars)
186 187
        dataset.set_filelist([filename1, filename2])
        dataset.load_into_memory()
188 189 190 191 192
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
193
        exe = fluid.Executor(fluid.CPUPlace())
194
        exe.run(startup_program)
195 196 197 198 199 200
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
201
                    exe.run(main_program, feed=data)
202 203 204
        else:
            for i in range(self.epoch_num):
                try:
205
                    exe.train_from_dataset(main_program, dataset)
206 207 208 209 210 211
                except Exception as e:
                    self.assertTrue(False)

        os.remove(filename1)
        os.remove(filename2)

X
xjqbest 已提交
212
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
213
        """
X
xjqbest 已提交
214
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
215 216
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
217 218 219 220
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
221
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
222 223 224 225 226 227
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

228
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
229 230
        slots_vars = []
        for slot in slots:
231 232
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
233 234
            slots_vars.append(var)

235 236 237 238
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(fea_eval=True, candidate_size=1)
239 240 241 242
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
243
        dataset.load_into_memory()
244
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
245
        dataset.local_shuffle()
246 247
        dataset._set_generate_unique_feasigns(True, 15)
        dataset._generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
248 249
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
264

X
xjqbest 已提交
265 266
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="int64", lod_level=1)
                slots_vars.append(var)
            for slot in slots[2:]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)

304 305 306 307
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

326 327
        #dataset._set_merge_by_lineid(2)
        dataset.update_settings(merge_size=2)
328 329 330 331 332
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch_b.txt")

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch1_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch1_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            var1 = fluid.layers.data(
                name="slot1", shape=[1], dtype="int64", lod_level=0)
            var2 = fluid.layers.data(
                name="slot2", shape=[1], dtype="int64", lod_level=0)
            var3 = fluid.layers.data(
                name="slot3", shape=[1], dtype="float32", lod_level=0)
            var4 = fluid.layers.data(
                name="slot4", shape=[1], dtype="float32", lod_level=0)
            slots_vars = [var1, var2, var3, var4]

369 370 371 372
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

391
        dataset._set_merge_by_lineid(2)
392 393 394 395 396
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch1_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch1_b.txt")

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

422 423 424
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
425 426 427 428 429 430 431 432 433 434
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
468

469 470 471
        dataset._set_merge_by_lineid(2)
        dataset._set_parse_ins_id(False)
        dataset._set_fleet_send_sleep_seconds(2)
472 473 474 475 476
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.release_memory()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
477 478
        dataset.dataset.merge_by_lineid()
        dataset.release_memory()
479 480
        dataset._set_merge_by_lineid(30)
        dataset._set_parse_ins_id(False)
481 482
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        dataset.update_settings(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=[],
            fs_name="",
            fs_ugi="",
            download_cmd="cat",
            merge_size=-1,
            parse_ins_id=False,
            parse_content=False,
            fleet_send_batch_size=2,
            fleet_send_sleep_seconds=2,
            fea_eval=True)
498
        fleet_ptr = fluid.core.Fleet()
499
        fleet_ptr.set_client2client_config(1, 1, 1)
500
        fleet_ptr.get_cache_threshold(0)
501

502 503 504
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
505
    def test_queue_dataset_run(self):
X
xjqbest 已提交
506
        """
X
xjqbest 已提交
507
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
508 509
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
510 511 512 513
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
514
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
515 516 517 518 519 520
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

521
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
522 523
        slots_vars = []
        for slot in slots:
524 525
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
526 527
            slots_vars.append(var)

528 529 530
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
531 532
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
533 534 535

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
550

551 552 553
        dataset2 = paddle.distributed.QueueDataset()
        dataset2.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
554 555 556 557 558 559 560 561
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

X
xjqbest 已提交
562 563
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

590 591 592
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
593 594 595
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.data(
                name=slot, shape=[None, 1], dtype="int64", lod_level=1)
            slots_vars.append(var)

643 644 645 646 647 648 649
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=slots_vars)
650 651 652 653
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.load_into_memory()

654 655 656
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
671 672 673 674

        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

X
xjqbest 已提交
675

Z
Zeng Jinle 已提交
676
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
677 678 679 680
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
681
    def setUp(self):
X
xujiaqi01 已提交
682 683 684
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
685 686 687 688 689
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


690
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
691 692 693 694
    """
    Test Dataset With Fetch Handler. TestCases.
    """

695
    def net(self):
X
xujiaqi01 已提交
696 697 698
        """
        Test Dataset With Fetch Handler. TestCases.
        """
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
716 717 718 719 720 721 722
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
723 724 725
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=inputs)
726 727 728 729
        dataset.set_filelist(files)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
730 731 732
        """
        Test Dataset With Fetch Handler. TestCases.
        """
733 734 735 736 737 738 739 740 741 742 743 744 745
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
746 747 748
        """
        Test Dataset With Fetch Handler. TestCases.
        """
749 750 751 752
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
X
xujiaqi01 已提交
753 754 755
        """
        Test Dataset With Fetch Handler. TestCases.
        """
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
775 776 777
        """
        Test Dataset With Fetch Handler. TestCases.
        """
778 779 780 781 782 783 784 785 786 787 788 789 790 791
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

819

X
xujiaqi01 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
833 834 835

        self.skipTest("parameter server will add pslib UT later")

X
xujiaqi01 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        with open("test_in_memory_dataset2_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
851
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
866
                fleet.init()
X
xujiaqi01 已提交
867 868 869 870 871 872 873 874 875 876 877
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
878 879 880 881 882 883 884
            dataset = paddle.distributed.InMemoryDataset()

            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            dataset.set_filelist([
                "test_in_memory_dataset2_run_a.txt",
                "test_in_memory_dataset2_run_b.txt"
            ])
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run_a.txt")
        os.remove("./test_in_memory_dataset2_run_b.txt")

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
915
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
930
                fleet.init()
X
xujiaqi01 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
949 950 951 952 953 954
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
955 956 957 958 959
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
X
xujiaqi01 已提交
960 961 962 963
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
964 965
            fleet._opt_info = None
            fleet._fleet_ptr = None
966 967
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(fs_name="", fs_ugi="")
968
            d = paddle.distributed.fleet.DatasetBase()
969
            try:
970
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
990
            dataset._set_fleet_send_batch_size(1024)
991 992 993 994
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
995
            #dataset.get_pv_data_size()
996 997
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
998
            dataset = paddle.distributed.QueueDataset()
999 1000 1001 1002 1003 1004 1005 1006
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1007
            dataset = paddle.distributed.fleet.FileInstantDataset()
1008 1009 1010 1011 1012 1013 1014 1015
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1016 1017 1018 1019

        os.remove("./test_in_memory_dataset2_run2_a.txt")
        os.remove("./test_in_memory_dataset2_run2_b.txt")

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    def test_bosps_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
                fleet.init()
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
            fleet._opt_info = None
            fleet._fleet_ptr = None
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                rank_offset="",
                pv_batch_size=1,
                fs_name="",
                fs_ugi="",
                data_feed_type="MultiSlotInMemoryDataFeed",
                parse_logkey=True,
                merge_by_sid=True,
                enable_pv_merge=True)
            d = paddle.distributed.fleet.DatasetBase()
            try:
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset._set_parse_logkey(True)
            dataset._set_merge_by_sid(True)
            dataset._set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset._set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            #dataset.get_pv_data_size()
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()

X
xujiaqi01 已提交
1134

X
xjqbest 已提交
1135
if __name__ == '__main__':
X
xjqbest 已提交
1136
    unittest.main()