test_dataset.py 42.8 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18 19

from __future__ import print_function
20
import paddle
X
xjqbest 已提交
21
import paddle.fluid as fluid
22
import paddle.compat as cpt
23
import paddle.fluid.core as core
X
xjqbest 已提交
24 25 26 27 28 29 30
import numpy as np
import os
import shutil
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
31
    """  TestCases for Dataset. """
32

Z
Zeng Jinle 已提交
33 34 35 36 37
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
38
    def test_dataset_create(self):
X
xjqbest 已提交
39
        """ Testcase for dataset create. """
X
xjqbest 已提交
40
        try:
41
            dataset = paddle.distributed.InMemoryDataset()
X
xjqbest 已提交
42 43 44 45
        except:
            self.assertTrue(False)

        try:
46
            dataset = paddle.distributed.QueueDataset()
X
xjqbest 已提交
47 48 49
        except:
            self.assertTrue(False)

50
        try:
51
            dataset = paddle.distributed.fleet.dataset.FileInstantDataset()
52 53 54
        except:
            self.assertTrue(False)

X
xjqbest 已提交
55
        try:
56
            dataset = paddle.distributed.fleet.dataset.MyOwnDataset()
X
xjqbest 已提交
57 58 59 60
            self.assertTrue(False)
        except:
            self.assertTrue(True)

61 62 63 64 65 66 67
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
68
        dataset._set_trainer_num(1)
69 70
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)
71
        self.assertEqual(dataset.trainer_num, 1)
72

73 74 75 76 77 78 79 80
    def test_shuffle_by_uid(self):
        """
        Testcase for shuffle_by_uid.
        """
        dataset = paddle.distributed.InMemoryDataset()
        dataset._set_uid_slot('6048')
        dataset._set_shuffle_by_uid(True)

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_run_with_dump_a.txt", "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_run_with_dump_b.txt", "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

104 105 106 107 108 109 110 111 112
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset.update_settings(pipe_command="cat1")
        dataset._init_distributed_settings(
            parse_ins_id=True,
            parse_content=True,
            fea_eval=True,
            candidate_size=10000)
113 114 115 116 117
        dataset.set_filelist(
            ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"])
        dataset.load_into_memory()
        dataset.local_shuffle()

118 119 120 121 122 123
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
124 125
        for i in range(2):
            try:
126
                exe.train_from_dataset(main_program, dataset)
127 128 129 130 131 132 133 134
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        os.remove("./test_run_with_dump_a.txt")
        os.remove("./test_run_with_dump_b.txt")

X
xjqbest 已提交
135
    def test_dataset_config(self):
X
xjqbest 已提交
136
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
137 138 139 140 141
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
142
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
143
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        filename1 = "afs:test_in_memory_dataset_run_a.txt"
        filename2 = "afs:test_in_memory_dataset_run_b.txt"
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            slots_vars.append(var)

189 190 191 192 193 194 195
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32,
            thread_num=3,
            pipe_command="cat",
            download_cmd="cat",
            use_var=slots_vars)
196 197
        dataset.set_filelist([filename1, filename2])
        dataset.load_into_memory()
198 199 200 201 202
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
203
        exe = fluid.Executor(fluid.CPUPlace())
204
        exe.run(startup_program)
205 206 207 208 209 210
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
211
                    exe.run(main_program, feed=data)
212 213 214
        else:
            for i in range(self.epoch_num):
                try:
215
                    exe.train_from_dataset(main_program, dataset)
216 217 218 219 220 221
                except Exception as e:
                    self.assertTrue(False)

        os.remove(filename1)
        os.remove(filename2)

X
xjqbest 已提交
222
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
223
        """
X
xjqbest 已提交
224
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
225 226
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
227 228 229 230
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
231
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
232 233 234 235 236 237
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

238
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
239 240
        slots_vars = []
        for slot in slots:
241 242
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
243 244
            slots_vars.append(var)

245 246 247 248
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(fea_eval=True, candidate_size=1)
249 250 251 252
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
X
xjqbest 已提交
253
        dataset.load_into_memory()
254
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
255
        dataset.local_shuffle()
256 257
        dataset._set_generate_unique_feasigns(True, 15)
        dataset._generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
258 259
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
274

X
xjqbest 已提交
275 276
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")
X
xjqbest 已提交
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="int64", lod_level=1)
                slots_vars.append(var)
            for slot in slots[2:]:
                var = fluid.layers.data(
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)

314 315 316 317
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

336 337
        #dataset._set_merge_by_lineid(2)
        dataset.update_settings(merge_size=2)
338 339 340 341 342
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch_b.txt")

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset_masterpatch1_a.txt", "w") as f:
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
        with open("test_in_memory_dataset_masterpatch1_b.txt", "w") as f:
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            var1 = fluid.layers.data(
                name="slot1", shape=[1], dtype="int64", lod_level=0)
            var2 = fluid.layers.data(
                name="slot2", shape=[1], dtype="int64", lod_level=0)
            var3 = fluid.layers.data(
                name="slot3", shape=[1], dtype="float32", lod_level=0)
            var4 = fluid.layers.data(
                name="slot4", shape=[1], dtype="float32", lod_level=0)
            slots_vars = [var1, var2, var3, var4]

379 380 381 382
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

401
        dataset._set_merge_by_lineid(2)
402 403 404 405 406
        dataset.dataset.merge_by_lineid()

        os.remove("./test_in_memory_dataset_masterpatch1_a.txt")
        os.remove("./test_in_memory_dataset_masterpatch1_b.txt")

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_in_memory_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

432 433 434
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
435 436 437 438 439 440 441 442 443 444
        dataset.set_filelist([
            "test_in_memory_dataset_run_a.txt",
            "test_in_memory_dataset_run_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=1)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=2)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=3)
                exe.train_from_dataset(
                    fluid.default_main_program(), dataset, thread=4)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
478

479 480 481
        dataset._set_merge_by_lineid(2)
        dataset._set_parse_ins_id(False)
        dataset._set_fleet_send_sleep_seconds(2)
482 483 484 485
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
486
        dataset.dataset.merge_by_lineid()
487 488
        dataset._set_merge_by_lineid(30)
        dataset._set_parse_ins_id(False)
489 490
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        dataset.update_settings(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=[],
            fs_name="",
            fs_ugi="",
            download_cmd="cat",
            merge_size=-1,
            parse_ins_id=False,
            parse_content=False,
            fleet_send_batch_size=2,
            fleet_send_sleep_seconds=2,
            fea_eval=True)
506
        fleet_ptr = fluid.core.Fleet()
507
        fleet_ptr.set_client2client_config(1, 1, 1)
508
        fleet_ptr.get_cache_threshold(0)
509

510 511 512
        os.remove("./test_in_memory_dataset_run_a.txt")
        os.remove("./test_in_memory_dataset_run_b.txt")

X
xjqbest 已提交
513
    def test_queue_dataset_run(self):
X
xjqbest 已提交
514
        """
X
xjqbest 已提交
515
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
516 517
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
X
xjqbest 已提交
518 519 520 521
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
X
xjqbest 已提交
522
        with open("test_queue_dataset_run_b.txt", "w") as f:
X
xjqbest 已提交
523 524 525 526 527 528
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

529
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
530 531
        slots_vars = []
        for slot in slots:
532 533
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
X
xjqbest 已提交
534 535
            slots_vars.append(var)

536 537 538
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
539 540
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
X
xjqbest 已提交
541 542 543

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
558

559 560 561
        dataset2 = paddle.distributed.QueueDataset()
        dataset2.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
562 563 564 565 566 567 568 569
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

570 571 572 573
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
X
xjqbest 已提交
574

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(
                name=slot, shape=[1], dtype="float32", lod_level=1)
            slots_vars.append(var)

600 601 602
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=slots_vars)
603 604 605
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

624 625 626 627
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.data(
                name=slot, shape=[None, 1], dtype="int64", lod_level=1)
            slots_vars.append(var)

655 656 657 658 659 660 661
        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(
            batch_size=1,
            thread_num=2,
            input_type=1,
            pipe_command="cat",
            use_var=slots_vars)
662 663 664 665
        dataset.set_filelist(
            ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"])
        dataset.load_into_memory()

666 667 668
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682
        if self.use_data_loader:
            data_loader = fluid.io.DataLoader.from_dataset(dataset,
                                                           fluid.cpu_places(),
                                                           self.drop_last)
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
683

684 685 686 687
        if os.path.exists("./test_queue_dataset_run_a.txt"):
            os.remove("./test_queue_dataset_run_a.txt")
        if os.path.exists("./test_queue_dataset_run_b.txt"):
            os.remove("./test_queue_dataset_run_b.txt")
688

X
xjqbest 已提交
689

Z
Zeng Jinle 已提交
690
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
691 692 693 694
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
695
    def setUp(self):
X
xujiaqi01 已提交
696 697 698
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
699 700 701 702 703
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


704
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
705 706 707 708
    """
    Test Dataset With Fetch Handler. TestCases.
    """

709
    def net(self):
X
xujiaqi01 已提交
710 711 712
        """
        Test Dataset With Fetch Handler. TestCases.
        """
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
            data = fluid.layers.data(
                name=slot, shape=[1], dtype="int64", lod_level=1)
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
730 731 732 733 734 735 736
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
737 738 739
        dataset = paddle.distributed.QueueDataset()
        dataset.init(
            batch_size=32, thread_num=3, pipe_command="cat", use_var=inputs)
740 741 742 743
        dataset.set_filelist(files)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
744 745 746
        """
        Test Dataset With Fetch Handler. TestCases.
        """
747 748 749 750 751 752 753 754 755 756 757 758 759
        with open("test_queue_dataset_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_queue_dataset_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
760 761 762
        """
        Test Dataset With Fetch Handler. TestCases.
        """
763 764 765 766
        os.remove("./test_queue_dataset_run_a.txt")
        os.remove("./test_queue_dataset_run_b.txt")

    def test_dataset_none(self):
X
xujiaqi01 已提交
767 768 769
        """
        Test Dataset With Fetch Handler. TestCases.
        """
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
789 790 791
        """
        Test Dataset With Fetch Handler. TestCases.
        """
792 793 794 795 796 797 798 799 800 801 802 803 804 805
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
        files = ["test_queue_dataset_run_a.txt", "test_queue_dataset_run_b.txt"]
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=dataset,
                fetch_handler=fh)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
            self.assertEqual(error_msg, cpt.get_exception_message(e))
        except Exception as e:
            self.assertTrue(False)

833

X
xujiaqi01 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
847 848 849

        self.skipTest("parameter server will add pslib UT later")

X
xujiaqi01 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
        with open("test_in_memory_dataset2_run_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
865
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
880
                fleet.init()
X
xujiaqi01 已提交
881 882 883 884 885 886 887 888 889 890 891
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
892 893 894 895 896 897 898
            dataset = paddle.distributed.InMemoryDataset()

            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
            dataset.set_filelist([
                "test_in_memory_dataset2_run_a.txt",
                "test_in_memory_dataset2_run_b.txt"
            ])
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

        os.remove("./test_in_memory_dataset2_run_a.txt")
        os.remove("./test_in_memory_dataset2_run_b.txt")

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
929
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
930 931 932 933 934 935 936 937 938 939 940 941 942 943
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
944
                fleet.init()
X
xujiaqi01 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
963 964 965 966 967 968
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
X
xujiaqi01 已提交
969 970 971 972 973
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
X
xujiaqi01 已提交
974 975 976 977
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
978 979
            fleet._opt_info = None
            fleet._fleet_ptr = None
980 981
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(fs_name="", fs_ugi="")
982
            d = paddle.distributed.fleet.DatasetBase()
983
            try:
984
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
1004
            dataset._set_fleet_send_batch_size(1024)
1005 1006 1007 1008
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1009
            #dataset.get_pv_data_size()
1010 1011
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1012
            dataset = paddle.distributed.QueueDataset()
1013 1014 1015 1016 1017 1018 1019 1020
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1021
            dataset = paddle.distributed.fleet.FileInstantDataset()
1022 1023 1024 1025 1026 1027 1028 1029
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1030 1031 1032 1033

        os.remove("./test_in_memory_dataset2_run2_a.txt")
        os.remove("./test_in_memory_dataset2_run2_b.txt")

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    def test_bosps_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
        with open("test_in_memory_dataset2_run2_a.txt", "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open("test_in_memory_dataset2_run2_b.txt", "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
            fake_cost = fluid.layers.mean(fake_cost)
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
                fleet.init()
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(
                    adam,
                    strategy={
                        "fs_uri": "fs_uri_xxx",
                        "fs_user": "fs_user_xxx",
                        "fs_passwd": "fs_passwd_xxx",
                        "fs_hadoop_bin": "fs_hadoop_bin_xxx"
                    })
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                batch_size=32,
                thread_num=3,
                pipe_command="cat",
                use_var=slots_vars)
            dataset.set_filelist([
                "test_in_memory_dataset2_run2_a.txt",
                "test_in_memory_dataset2_run2_b.txt"
            ])
            dataset.load_into_memory()
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
            fleet._opt_info = None
            fleet._fleet_ptr = None
            dataset = paddle.distributed.fleet.BoxPSDataset()
            dataset.init(
                rank_offset="",
                pv_batch_size=1,
                fs_name="",
                fs_ugi="",
                data_feed_type="MultiSlotInMemoryDataFeed",
                parse_logkey=True,
                merge_by_sid=True,
                enable_pv_merge=True)
            d = paddle.distributed.fleet.DatasetBase()
            try:
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset._set_parse_logkey(True)
            dataset._set_merge_by_sid(True)
            dataset._set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset._set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            #dataset.get_pv_data_size()
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()

X
xujiaqi01 已提交
1148

X
xjqbest 已提交
1149
if __name__ == '__main__':
X
xjqbest 已提交
1150
    unittest.main()