utils.py 20.9 KB
Newer Older
1 2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
3
#
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities of Auto SParsity (ASP).
"""

import sys
import math
import collections
import numpy as np
from enum import Enum
from itertools import permutations
import threading

__all__ = [
28 29 30 31 32 33 34 35 36 37
    'calculate_density',
    'check_mask_1d',
    'get_mask_1d',
    'check_mask_2d',
    'get_mask_2d_greedy',
    'get_mask_2d_best',
    'create_mask',
    'check_sparsity',
    'MaskAlgo',
    'CheckMethod',
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
]


class MaskAlgo(Enum):
    r"""
    A collection of all mask generating algorithms.
    There currently are three algorithms, `MASK_1D`, `MASK_2D_GREEDY` and `MASK_2D_BEST`
    """
    MASK_1D = 'get_mask_1d'
    MASK_2D_GREEDY = 'get_mask_2d_greedy'
    MASK_2D_BEST = 'get_mask_2d_best'


class CheckMethod(Enum):
    r"""
    A collection of all sparsity checking approaches.
    There currently are two methods, `CHECK_1D` and `CHECK_2D`
    """
    CHECK_1D = 'check_mask_1d'
    CHECK_2D = 'check_mask_2d'

    @staticmethod
    def get_checking_method(mask_algo):
        r"""
        Get sparsity checking method by mask generating algorithm.

        Args:
            mask_algo (MaskAlgo): The algorithm of mask generating.
        Returns:
            CheckMethod: The corresponded sparsity checking method.
        Examples:
            .. code-block:: python

            import numpy as np
72 73
            from paddle.static.sparsity import MaskAlgo
            from paddle.fluid.contrib.sparsity import CheckMethod
74 75 76 77 78 79 80 81 82 83

            CheckMethod.get_checking_method(MaskAlgo.MASK_1D)
            # CheckMethod.CHECK_1D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_GREEDY)
            # CheckMethod.CHECK_2D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
            # CheckMethod.CHECK_2D
        """
84 85 86
        assert isinstance(
            mask_algo, MaskAlgo
        ), "mask_algo should be MaskAlgo type"
87 88 89 90 91 92
        if mask_algo == MaskAlgo.MASK_1D:
            return CheckMethod.CHECK_1D
        else:
            return CheckMethod.CHECK_2D


93
def calculate_density(x):
94
    r"""
U
ustiniankw 已提交
95

96 97 98 99
    Return the density of the input tensor.

    Args:
        x (nparray): The input tensor.
U
ustiniankw 已提交
100

101
    Returns:
U
ustiniankw 已提交
102 103
        float, The density of :attr:`x`.

104 105 106
    Examples:
        .. code-block:: python

U
ustiniankw 已提交
107 108 109 110
            import paddle
            import numpy as np

            x = np.array([[0, 1, 3, 0],
111
                        [1, 1, 0, 1]])
U
ustiniankw 已提交
112 113
            paddle.incubate.asp.calculate_density(x) # 0.625

114 115 116 117 118
    """
    x_flattened = x.flatten()
    return float(np.nonzero(x_flattened)[0].size) / x_flattened.size


119
def _reshape_1d(mat, m):
120
    r"""
121
    Reshape the input 2D matrix to shape (-1, m).
122
    If the second dimension of :attr:`mat` is not a multiples of :attr:`m`,
123 124 125 126 127 128 129
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder = mat.shape[1] % m

    Args:
130
        mat (nparray): The input 2D matrix.
131 132 133 134
        m (int): The second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
135 136
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

137 138 139
    remainder = mat.shape[1] % m
    if mat.shape[1] % m > 0:
        mat_padded = np.zeros((mat.shape[0], mat.shape[1] + (m - remainder)))
140
        mat_padded[:, : mat.shape[1]] = mat
141 142 143 144 145 146 147 148 149
        shape = mat_padded.shape
        return mat_padded.reshape(-1, m), shape
    else:
        return mat.reshape(-1, m), mat.shape


def check_mask_1d(mat, n, m):
    r"""
    Check if every row of the input matrix :attr:`mat` is in 1D `n:m` sparse pattern.
150
    This function would pad the second dimension of :attr:`mat` by zero
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    to be a multiples of :attr:`m` if necessary.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if every row of :attr:`mat` is in 1D n:m sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 1, 3, 0],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # True

          x = np.array([[0, 1, 5, 4],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # False

          # x would be padded to shape (2, 8)
          x = np.array([[0, 1, 0, 4, 6],
                        [1, 0, 0, 1, 7]])
          sparsity.check_mask_1d(x, 2, 4) # True
    """
    if len(mat.shape) <= 1:
181
        mat_flattern, shape = _reshape_1d(mat.reshape(1, mat.shape[0]), m)
182
    else:
183
        mat_flattern, shape = _reshape_1d(mat, m)
184 185 186 187 188 189 190 191 192

    for sub_mat in mat_flattern:
        if np.nonzero(sub_mat)[0].size > (m - n):
            return False
    return True


def get_mask_1d(mat, n, m):
    r"""
193 194
    Generate 1D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    in row-directory. This function would pad the second dimension of :attr:`mat`
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    by zero to be a multiples of :attr:`m` before mask generation.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[0, 1, 5, 4],
                          [2, 7, 3, 6]])
          mask = sparsity.get_mask_1d(mat, 2, 4)
          # nparray([[0, 0, 1, 1],
          #          [0, 1, 0, 1]])
          sparsity.check_mask_1d(mask, 2, 4) # True
    """
218
    mat_flattern, shape = _reshape_1d(mat, m)
219 220 221 222 223 224 225 226

    mask_flattern = np.ones_like(mat_flattern)
    mask = np.ones_like(mat)
    for i in range(mat_flattern.shape[0]):
        sub_mat = mat_flattern[i]
        min_order_indices = np.argsort(np.absolute(sub_mat))
        mask_flattern[i, min_order_indices[:n].tolist()] = 0
    mask_flattern = mask_flattern.reshape(shape)
227
    mask[:, :] = mask_flattern[:, : mat.shape[1]]
228 229 230
    return mask


231
def _reshape_2d(mat, m):
232
    r"""
233
    Reshape the input 2D matrix to shape (-1, :math:`m \times m`).
234
    In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`,
235 236 237 238 239 240 241 242
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder_0 = mat.shape[0] % m \\
        remainder_1 = mat.shape[1] % m

    Args:
243
        mat (nparray): The input 2D matrix.
244 245 246 247
        m (int): The square root of second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
248 249
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

250 251 252
    remainder_0 = mat.shape[0] % m
    remainder_1 = mat.shape[1] % m

253 254 255 256
    new_shape = (
        mat.shape[0] if remainder_0 == 0 else mat.shape[0] + (m - remainder_0),
        mat.shape[1] if remainder_1 == 0 else mat.shape[1] + (m - remainder_1),
    )
257
    mat_padded = np.zeros(new_shape)
258
    mat_padded[: mat.shape[0], : mat.shape[1]] = mat
259 260 261 262 263 264 265

    mat_flattern = np.empty(new_shape).reshape(-1, m * m)
    curr_idx = 0
    for row_start in range(0, mat_padded.shape[0], m):
        row_end = row_start + m
        for col_start in range(0, mat_padded.shape[1], m):
            col_end = col_start + m
266 267 268
            sub_mat = np.squeeze(
                mat_padded[row_start:row_end, col_start:col_end].reshape(-1)
            )
269 270 271 272 273 274 275 276
            mat_flattern[curr_idx] = sub_mat
            curr_idx += 1
    return mat_flattern, mat_padded.shape


def check_mask_2d(mat, n, m):
    r"""
    Check if every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern.
277
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of
278 279
    :attr:`m` if necessary.

280
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if  every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 8, 9, 0],
                        [9, 0, 0, 10],
                        [5, 0, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # True

          x = np.array([[0, 8, 0, 9],
                        [9, 0, 0, 10],
                        [0, 5, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # False

          # x would be padded to shape (8, 8)
          x = np.array([[0, 8, 0, 9],
                        [9, 0, 7, 0],
                        [0, 5, 0, 6],
                        [3, 0, 6, 0],
                        [1, 1, 0, 1]])
          sparsity.check_mask_2d(x, 2, 4) # True
    """
315
    mat_padded, shape = _reshape_2d(mat, m)
316 317
    for sub_mat in mat_padded:
        sub_mask = np.absolute(np.squeeze(sub_mat.reshape(m, m))) > 0
318 319 320
        if (np.sum(np.sum(sub_mask, axis=1) > (m - n)) != 0) and (
            np.sum(np.sum(sub_mask, axis=0) > (m - n)) != 0
        ):
321 322 323 324 325 326
            return False
    return True


def get_mask_2d_greedy(mat, n, m):
    r"""
327
    Greedily generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`.
328 329
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

330
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    under the constraint of at least :attr:`n` zeros for each row and column.
    Greedily generating: For each :math:`m \times m` block, selecting values to keep in descent order.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 2D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[9, 8, 3, 7],
                          [9, 2, 1, 10],
                          [5, 1, 3, 6],
                          [2, 4, 6, 1]])
          mask = sparsity.get_mask_2d_greedy(mat, 2, 4)
          # nparray([[1. 1. 0. 0.]
          #          [1. 0. 0. 1.]
          #          [0. 0. 1. 1.]
          #          [0. 1. 1. 0.]])
          sparsity.check_mask_2d(mask, 2, 4) # True
    """
357
    mat_padded, shape = _reshape_2d(mat, m)
358 359 360 361 362 363 364
    mask_padded = np.zeros_like(mat_padded).reshape(-1, m, m)

    for idx in range(len(mat_padded)):
        sub_mat = np.absolute(np.squeeze(mat_padded[idx]))
        sub_mask = np.squeeze(mask_padded[idx])

        min_order_1d_indices = np.argsort(sub_mat)
365 366 367
        min_order_2d_indices = [
            (int(x / m), x % m) for x in min_order_1d_indices
        ]
368 369 370 371 372
        row_counter = collections.Counter()
        col_counter = collections.Counter()

        for i in range(len(min_order_1d_indices) - 1, -1, -1):
            matrix_entry = min_order_2d_indices[i]
373 374 375
            if (row_counter[matrix_entry[0]] == n) or (
                col_counter[matrix_entry[1]] == n
            ):
376 377 378 379 380 381 382 383 384 385 386 387 388 389
                continue

            sub_mask[matrix_entry[0], matrix_entry[1]] = 1.0
            row_counter[matrix_entry[0]] += 1
            col_counter[matrix_entry[1]] += 1

    mask = np.empty(shape)
    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_padded[curr_idx]
            curr_idx += 1
390
    return mask[: mat.shape[0], : mat.shape[1]]
391 392


393 394
_valid_2d_patterns_lock = threading.Lock()
_valid_2d_patterns = {}
395 396


397
def _compute_valid_2d_patterns(n, m):
398 399 400
    r"""
    Compute all vaild 2D `n:m` sparse patterns.

401
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
402 403 404 405 406 407 408 409
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
    """
410 411
    global _valid_2d_patterns_lock
    global _valid_2d_patterns
412 413

    valid_key = '{}_{}'.format(m, n)
414 415
    if valid_key in _valid_2d_patterns:
        return _valid_2d_patterns[valid_key]
416 417 418 419 420 421 422
    else:
        patterns = np.zeros(m)
        patterns[:n] = 1
        patterns = list(set(permutations(patterns.tolist())))
        patterns = patterns + patterns
        patterns = np.asarray(list(set(permutations(patterns, m))))

423 424 425 426 427
        valid = (
            ((patterns.sum(axis=1) <= n).sum(axis=1) == m)
            .nonzero()[0]
            .reshape(-1)
        )
428 429 430
        valid_patterns = np.empty((valid.shape[0], m, m))
        valid_patterns[:] = patterns[valid[:]]

431 432 433
        _valid_2d_patterns_lock.acquire()
        _valid_2d_patterns[valid_key] = valid_patterns
        _valid_2d_patterns_lock.release()
434 435 436 437 438 439

        return valid_patterns


def get_mask_2d_best(mat, n, m):
    r"""
440 441
    Generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    to form sparse matrix with maximun L1 norm .This function would pad each
442 443
    dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

444
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    under the constraint of at least :attr:`n` zeros for each row and column.

    *Note*: L1 norm of sparse matrix from `Best` API is greater than or equal to the one from `Greedy`.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[2, 8, 9, 9],
                          [9, 1, 3, 9],
                          [5, 6, 3, 9],
                          [2, 4, 6, 9]])
          mask_greedy = sparsity.get_mask_2d_greedy(mat, 2, 4)
466
          mask_best = sparsity.get_mask_2d_best(mat, 2, 4)
467 468 469
          print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
          print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
    """
470
    patterns = _compute_valid_2d_patterns(n, m)
471

472
    mat_flattern, shape = _reshape_2d(mat, m)
473
    mask_flattern = np.ones_like(mat_flattern).reshape(-1, m, m)
474 475 476 477
    pmax = np.argmax(
        np.matmul(mat_flattern, patterns.reshape(patterns.shape[0], m * m).T),
        axis=1,
    )
478 479 480 481 482 483 484 485 486 487 488

    mask_flattern[:] = patterns[pmax[:]]
    mask = np.empty(shape)

    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_flattern[curr_idx]
            curr_idx += 1
489
    return mask[: mat.shape[0], : mat.shape[1]]
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528


def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
    r"""
    Create `n:m` sparse pattern mask of the input tensor via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (MaskAlgo, optional): The function name to generate spase mask. Default is `MaskAlgo.MASK_1D`. All options please refer to `MaskAlgo`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        nparray: The `n:m` sparse mask of :attr:`tensor` generated by :attr:`func_name`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          mask_2d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_2D_BEST)
          # nparray([[0 1 1 0],
          #          [1 0 0 1],
          #          [1 1 0 0],
          #          [0 0 1 1]])
    """
    shape = tensor.shape
    dtype = tensor.dtype
    t = tensor.astype(float)

529 530 531 532
    assert isinstance(func_name, MaskAlgo), (
        "func_name argumet of create_mask is only accepted as type MaskAlgo. "
        "But got {}".format(type(func_name))
    )
533 534 535 536 537 538 539
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
540
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
541
    elif len(shape) == 4:
542 543 544
        t = t.transpose([0, 1, 3, 2]).reshape(
            shape[0] * shape[1] * shape[3], shape[2]
        )
545
        mask = func(t, n=n, m=m)
546 547 548 549 550
        return (
            mask.reshape([shape[0], shape[1], shape[3], shape[2]])
            .transpose([0, 1, 3, 2])
            .astype(dtype)
        )
551
    else:
552 553 554 555
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
556 557 558

    mask = func(t, n=n, m=m)
    return mask.reshape(shape).astype(dtype)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593


def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
    r"""
    Check if input tensor is in `n:m` sparse pattern via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (CheckMethod, optional): The function name to generate spase mask. Default is `CheckMethod.CHECK_1D`. All options please refer to `CheckMethod`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        bool: True if tensor pass checking of function given by :attr:`func_name`, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False
    """
    shape = tensor.shape
    t = tensor.astype(float)

594 595 596 597
    assert type(func_name) == CheckMethod, (
        "func_name argumet of check_sparsity is only accepted as type CheckMethod. "
        "But got {}".format(type(func_name))
    )
598 599 600 601 602 603 604
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
605
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
606
    elif len(shape) == 4:
607 608 609
        t = t.transpose([0, 1, 3, 2]).reshape(
            [shape[0] * shape[1] * shape[3], shape[2]]
        )
610
    else:
611 612 613 614
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
615

616
    return func(t, n=n, m=m)