utils.py 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities of Auto SParsity (ASP).
"""

from __future__ import print_function

import sys
import math
import collections
import numpy as np
from enum import Enum
from itertools import permutations
import threading

__all__ = [
    'density', 'check_mask_1d', 'get_mask_1d', 'check_mask_2d',
    'get_mask_2d_greedy', 'get_mask_2d_best', 'create_mask', 'check_sparsity',
    'MaskAlgo', 'CheckMethod'
]


class MaskAlgo(Enum):
    r"""
    A collection of all mask generating algorithms.
    There currently are three algorithms, `MASK_1D`, `MASK_2D_GREEDY` and `MASK_2D_BEST`
    """
    MASK_1D = 'get_mask_1d'
    MASK_2D_GREEDY = 'get_mask_2d_greedy'
    MASK_2D_BEST = 'get_mask_2d_best'


class CheckMethod(Enum):
    r"""
    A collection of all sparsity checking approaches.
    There currently are two methods, `CHECK_1D` and `CHECK_2D`
    """
    CHECK_1D = 'check_mask_1d'
    CHECK_2D = 'check_mask_2d'

    @staticmethod
    def get_checking_method(mask_algo):
        r"""
        Get sparsity checking method by mask generating algorithm.

        Args:
            mask_algo (MaskAlgo): The algorithm of mask generating.
        Returns:
            CheckMethod: The corresponded sparsity checking method.
        Examples:
            .. code-block:: python

            import numpy as np
            from paddle.fluid.contrib.sparsity import MaskAlgo, CheckMethod

            CheckMethod.get_checking_method(MaskAlgo.MASK_1D)
            # CheckMethod.CHECK_1D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_GREEDY)
            # CheckMethod.CHECK_2D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
            # CheckMethod.CHECK_2D
        """
        assert type(mask_algo) == MaskAlgo, \
               "mask_algo should be MaskAlgo type"
        if mask_algo == MaskAlgo.MASK_1D:
            return CheckMethod.CHECK_1D
        else:
            return CheckMethod.CHECK_2D


def density(x):
    r"""
    Return the density of the input tensor.

    Args:
        x (nparray): The input tensor.
    Returns:
        float: The density of :attr:`x`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 1, 3, 0],
                        [1, 1, 0, 1]])
          sparsity.density(x) # 0.625
    """
    x_flattened = x.flatten()
    return float(np.nonzero(x_flattened)[0].size) / x_flattened.size


def reshape_1d(mat, m):
    r"""
    Reshape the input matrix to shape (-1, m).
    If the second dimension of :attr:`mat` is not a multiples of :attr:`m`, 
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder = mat.shape[1] % m

    Args:
        mat (nparray): The input matrix.
        m (int): The second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
    remainder = mat.shape[1] % m
    if mat.shape[1] % m > 0:
        mat_padded = np.zeros((mat.shape[0], mat.shape[1] + (m - remainder)))
        mat_padded[:, :mat.shape[1]] = mat
        shape = mat_padded.shape
        return mat_padded.reshape(-1, m), shape
    else:
        return mat.reshape(-1, m), mat.shape


def check_mask_1d(mat, n, m):
    r"""
    Check if every row of the input matrix :attr:`mat` is in 1D `n:m` sparse pattern.
    This function would pad the second dimension of :attr:`mat` by zero 
    to be a multiples of :attr:`m` if necessary.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if every row of :attr:`mat` is in 1D n:m sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 1, 3, 0],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # True

          x = np.array([[0, 1, 5, 4],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # False

          # x would be padded to shape (2, 8)
          x = np.array([[0, 1, 0, 4, 6],
                        [1, 0, 0, 1, 7]])
          sparsity.check_mask_1d(x, 2, 4) # True
    """
    if len(mat.shape) <= 1:
        mat_flattern, shape = reshape_1d(mat.reshape(1, mat.shape[0]), m)
    else:
        mat_flattern, shape = reshape_1d(mat, m)

    for sub_mat in mat_flattern:
        if np.nonzero(sub_mat)[0].size > (m - n):
            return False
    return True


def get_mask_1d(mat, n, m):
    r"""
    Generate 1D `n:m` sparse pattern mask of the input matrix :attr:`mat` 
    in row-directory. This function would pad the second dimension of :attr:`mat` 
    by zero to be a multiples of :attr:`m` before mask generation.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[0, 1, 5, 4],
                          [2, 7, 3, 6]])
          mask = sparsity.get_mask_1d(mat, 2, 4)
          # nparray([[0, 0, 1, 1],
          #          [0, 1, 0, 1]])
          sparsity.check_mask_1d(mask, 2, 4) # True
    """
    mat_flattern, shape = reshape_1d(mat, m)

    mask_flattern = np.ones_like(mat_flattern)
    mask = np.ones_like(mat)
    for i in range(mat_flattern.shape[0]):
        sub_mat = mat_flattern[i]
        min_order_indices = np.argsort(np.absolute(sub_mat))
        mask_flattern[i, min_order_indices[:n].tolist()] = 0
    mask_flattern = mask_flattern.reshape(shape)
    mask[:, :] = mask_flattern[:, :mat.shape[1]]
    return mask


def reshape_2d(mat, m):
    r"""
    Reshape the input matrix to shape (-1, :math:`m \times m`).
    In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`, 
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder_0 = mat.shape[0] % m \\
        remainder_1 = mat.shape[1] % m

    Args:
        mat (nparray): The input matrix.
        m (int): The square root of second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
    remainder_0 = mat.shape[0] % m
    remainder_1 = mat.shape[1] % m

    new_shape = (mat.shape[0] if remainder_0 == 0 \
                 else mat.shape[0] + (m - remainder_0),
                 mat.shape[1] if remainder_1 == 0 \
                 else mat.shape[1] + (m - remainder_1))
    mat_padded = np.zeros(new_shape)
    mat_padded[:mat.shape[0], :mat.shape[1]] = mat

    mat_flattern = np.empty(new_shape).reshape(-1, m * m)
    curr_idx = 0
    for row_start in range(0, mat_padded.shape[0], m):
        row_end = row_start + m
        for col_start in range(0, mat_padded.shape[1], m):
            col_end = col_start + m
            sub_mat = np.squeeze(mat_padded[row_start:row_end, \
                                            col_start:col_end] \
                                            .reshape(-1))
            mat_flattern[curr_idx] = sub_mat
            curr_idx += 1
    return mat_flattern, mat_padded.shape


def check_mask_2d(mat, n, m):
    r"""
    Check if every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern.
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of 
    :attr:`m` if necessary.

    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block 
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if  every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 8, 9, 0],
                        [9, 0, 0, 10],
                        [5, 0, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # True

          x = np.array([[0, 8, 0, 9],
                        [9, 0, 0, 10],
                        [0, 5, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # False

          # x would be padded to shape (8, 8)
          x = np.array([[0, 8, 0, 9],
                        [9, 0, 7, 0],
                        [0, 5, 0, 6],
                        [3, 0, 6, 0],
                        [1, 1, 0, 1]])
          sparsity.check_mask_2d(x, 2, 4) # True
    """
    mat_padded, shape = reshape_2d(mat, m)
    for sub_mat in mat_padded:
        sub_mask = np.absolute(np.squeeze(sub_mat.reshape(m, m))) > 0
        if (np.sum(np.sum(sub_mask, axis=1) > (m-n)) != 0) and \
            (np.sum(np.sum(sub_mask, axis=0) > (m-n)) != 0):
            return False
    return True


def get_mask_2d_greedy(mat, n, m):
    r"""
    Greedily generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`. 
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block 
    under the constraint of at least :attr:`n` zeros for each row and column.
    Greedily generating: For each :math:`m \times m` block, selecting values to keep in descent order.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 2D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[9, 8, 3, 7],
                          [9, 2, 1, 10],
                          [5, 1, 3, 6],
                          [2, 4, 6, 1]])
          mask = sparsity.get_mask_2d_greedy(mat, 2, 4)
          # nparray([[1. 1. 0. 0.]
          #          [1. 0. 0. 1.]
          #          [0. 0. 1. 1.]
          #          [0. 1. 1. 0.]])
          sparsity.check_mask_2d(mask, 2, 4) # True
    """
    mat_padded, shape = reshape_2d(mat, m)
    mask_padded = np.zeros_like(mat_padded).reshape(-1, m, m)

    for idx in range(len(mat_padded)):
        sub_mat = np.absolute(np.squeeze(mat_padded[idx]))
        sub_mask = np.squeeze(mask_padded[idx])

        min_order_1d_indices = np.argsort(sub_mat)
        min_order_2d_indices = [(int(x / m), x % m)
                                for x in min_order_1d_indices]
        row_counter = collections.Counter()
        col_counter = collections.Counter()

        for i in range(len(min_order_1d_indices) - 1, -1, -1):
            matrix_entry = min_order_2d_indices[i]
            if (row_counter[matrix_entry[0]] == n) or \
               (col_counter[matrix_entry[1]] == n):
                continue

            sub_mask[matrix_entry[0], matrix_entry[1]] = 1.0
            row_counter[matrix_entry[0]] += 1
            col_counter[matrix_entry[1]] += 1

    mask = np.empty(shape)
    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_padded[curr_idx]
            curr_idx += 1
    return mask[:mat.shape[0], :mat.shape[1]]


valid_2d_patterns_lock = threading.Lock()
valid_2d_patterns = {}


def compute_valid_2d_patterns(n, m):
    r"""
    Compute all vaild 2D `n:m` sparse patterns.

    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block 
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
    """
    global valid_2d_patterns_lock
    global valid_2d_patterns

    valid_key = '{}_{}'.format(m, n)
    if valid_key in valid_2d_patterns:
        return valid_2d_patterns[valid_key]
    else:
        patterns = np.zeros(m)
        patterns[:n] = 1
        patterns = list(set(permutations(patterns.tolist())))
        patterns = patterns + patterns
        patterns = np.asarray(list(set(permutations(patterns, m))))

        valid = ((patterns.sum(axis=1) <= n).sum(axis=1) == m
                 ).nonzero()[0].reshape(-1)
        valid_patterns = np.empty((valid.shape[0], m, m))
        valid_patterns[:] = patterns[valid[:]]

        valid_2d_patterns_lock.acquire()
        valid_2d_patterns[valid_key] = valid_patterns
        valid_2d_patterns_lock.release()

        return valid_patterns


def get_mask_2d_best(mat, n, m):
    r"""
    Generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat` 
    to form sparse matrix with maximun L1 norm .This function would pad each 
    dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block 
    under the constraint of at least :attr:`n` zeros for each row and column.

    *Note*: L1 norm of sparse matrix from `Best` API is greater than or equal to the one from `Greedy`.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[2, 8, 9, 9],
                          [9, 1, 3, 9],
                          [5, 6, 3, 9],
                          [2, 4, 6, 9]])
          mask_greedy = sparsity.get_mask_2d_greedy(mat, 2, 4)
          mask_greedy = sparsity.get_mask_2d_best(mat, 2, 4)
          print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
          print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
    """
    patterns = compute_valid_2d_patterns(n, m)

    mat_flattern, shape = reshape_2d(mat, m)
    mask_flattern = np.ones_like(mat_flattern).reshape(-1, m, m)
    pmax = np.argmax(
        np.matmul(mat_flattern, patterns.reshape(patterns.shape[0], m * m).T),
        axis=1)

    mask_flattern[:] = patterns[pmax[:]]
    mask = np.empty(shape)

    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_flattern[curr_idx]
            curr_idx += 1
    return mask[:mat.shape[0], :mat.shape[1]]


def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
    r"""
    Create `n:m` sparse pattern mask of the input tensor via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (MaskAlgo, optional): The function name to generate spase mask. Default is `MaskAlgo.MASK_1D`. All options please refer to `MaskAlgo`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        nparray: The `n:m` sparse mask of :attr:`tensor` generated by :attr:`func_name`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          mask_2d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_2D_BEST)
          # nparray([[0 1 1 0],
          #          [1 0 0 1],
          #          [1 1 0 0],
          #          [0 0 1 1]])
    """
    shape = tensor.shape
    dtype = tensor.dtype
    t = tensor.astype(float)

    assert type(func_name) == MaskAlgo, \
           "func_name argumet of create_mask is only accepted as type MaskAlgo. " \
           "But got {}".format(type(func_name))
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
        mask = func(t, n=n, m=m)
        return mask.reshape(shape).astype(dtype)
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
        mask = func(t, n=n, m=m)
        return mask.reshape(shape).astype(dtype)
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
        mask = func(t, n=n, m=m)
        return mask.reshape(shape).astype(dtype)
    # 4d-tensor conv (out, in, h, w) -> (out, in*h*w) in GemmConvKernel Op
    elif len(shape) == 4:
        t = t.reshape(shape[0], shape[1] * shape[2] * shape[3])
        mask = func(t, n=n, m=m)
        return mask.reshape(shape).astype(dtype)
    else:
        assert True, "The dimension of input tensor is not supported in create_mask, " \
                     "Only dimension < 4 is supported but got {}".format(len(shape))


def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
    r"""
    Check if input tensor is in `n:m` sparse pattern via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (CheckMethod, optional): The function name to generate spase mask. Default is `CheckMethod.CHECK_1D`. All options please refer to `CheckMethod`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        bool: True if tensor pass checking of function given by :attr:`func_name`, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False
    """
    shape = tensor.shape
    t = tensor.astype(float)

    assert type(func_name) == CheckMethod, \
           "func_name argumet of check_sparsity is only accepted as type CheckMethod. " \
           "But got {}".format(type(func_name))
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
        return func(t, n=n, m=m)
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
        return func(t, n=n, m=m)
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
        return func(t, n=n, m=m)
    # 4d-tensor conv (out, in, h, w) -> (out, in*h*w) in GemmConvKernel Op
    elif len(shape) == 4:
        t = t.reshape(shape[0], shape[1] * shape[2] * shape[3])
        return func(t, n=n, m=m)
    else:
        assert True, "The dimension of input tensor is not supported in check_sparsity, " \
                     "Only dimension < 4 is supported but got {}".format(len(shape))

    return False