utils.py 20.9 KB
Newer Older
1 2
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
3
#
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities of Auto SParsity (ASP).
"""

import sys
import math
import collections
import numpy as np
from enum import Enum
from itertools import permutations
import threading

__all__ = [
28 29 30 31 32 33 34 35 36 37
    'calculate_density',
    'check_mask_1d',
    'get_mask_1d',
    'check_mask_2d',
    'get_mask_2d_greedy',
    'get_mask_2d_best',
    'create_mask',
    'check_sparsity',
    'MaskAlgo',
    'CheckMethod',
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
]


class MaskAlgo(Enum):
    r"""
    A collection of all mask generating algorithms.
    There currently are three algorithms, `MASK_1D`, `MASK_2D_GREEDY` and `MASK_2D_BEST`
    """
    MASK_1D = 'get_mask_1d'
    MASK_2D_GREEDY = 'get_mask_2d_greedy'
    MASK_2D_BEST = 'get_mask_2d_best'


class CheckMethod(Enum):
    r"""
    A collection of all sparsity checking approaches.
    There currently are two methods, `CHECK_1D` and `CHECK_2D`
    """
    CHECK_1D = 'check_mask_1d'
    CHECK_2D = 'check_mask_2d'

    @staticmethod
    def get_checking_method(mask_algo):
        r"""
        Get sparsity checking method by mask generating algorithm.

        Args:
            mask_algo (MaskAlgo): The algorithm of mask generating.
        Returns:
            CheckMethod: The corresponded sparsity checking method.
        Examples:
            .. code-block:: python

            import numpy as np
72 73
            from paddle.static.sparsity import MaskAlgo
            from paddle.fluid.contrib.sparsity import CheckMethod
74 75 76 77 78 79 80 81 82 83

            CheckMethod.get_checking_method(MaskAlgo.MASK_1D)
            # CheckMethod.CHECK_1D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_GREEDY)
            # CheckMethod.CHECK_2D

            CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
            # CheckMethod.CHECK_2D
        """
84 85 86
        assert isinstance(
            mask_algo, MaskAlgo
        ), "mask_algo should be MaskAlgo type"
87 88 89 90 91 92
        if mask_algo == MaskAlgo.MASK_1D:
            return CheckMethod.CHECK_1D
        else:
            return CheckMethod.CHECK_2D


93
def calculate_density(x):
94 95 96 97 98 99 100 101 102
    r"""
    Return the density of the input tensor.

    Args:
        x (nparray): The input tensor.
    Returns:
        float: The density of :attr:`x`.
    Examples:
        .. code-block:: python
103
          import paddle
104 105 106 107
          import numpy as np

          x = np.array([[0, 1, 3, 0],
                        [1, 1, 0, 1]])
108
          paddle.incubate.asp.calculate_density(x) # 0.625
109 110 111 112 113
    """
    x_flattened = x.flatten()
    return float(np.nonzero(x_flattened)[0].size) / x_flattened.size


114
def _reshape_1d(mat, m):
115
    r"""
116
    Reshape the input 2D matrix to shape (-1, m).
117
    If the second dimension of :attr:`mat` is not a multiples of :attr:`m`,
118 119 120 121 122 123 124
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder = mat.shape[1] % m

    Args:
125
        mat (nparray): The input 2D matrix.
126 127 128 129
        m (int): The second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
130 131
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

132 133 134
    remainder = mat.shape[1] % m
    if mat.shape[1] % m > 0:
        mat_padded = np.zeros((mat.shape[0], mat.shape[1] + (m - remainder)))
135
        mat_padded[:, : mat.shape[1]] = mat
136 137 138 139 140 141 142 143 144
        shape = mat_padded.shape
        return mat_padded.reshape(-1, m), shape
    else:
        return mat.reshape(-1, m), mat.shape


def check_mask_1d(mat, n, m):
    r"""
    Check if every row of the input matrix :attr:`mat` is in 1D `n:m` sparse pattern.
145
    This function would pad the second dimension of :attr:`mat` by zero
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    to be a multiples of :attr:`m` if necessary.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if every row of :attr:`mat` is in 1D n:m sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 1, 3, 0],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # True

          x = np.array([[0, 1, 5, 4],
                        [1, 0, 0, 1]])
          sparsity.check_mask_1d(x, 2, 4) # False

          # x would be padded to shape (2, 8)
          x = np.array([[0, 1, 0, 4, 6],
                        [1, 0, 0, 1, 7]])
          sparsity.check_mask_1d(x, 2, 4) # True
    """
    if len(mat.shape) <= 1:
176
        mat_flattern, shape = _reshape_1d(mat.reshape(1, mat.shape[0]), m)
177
    else:
178
        mat_flattern, shape = _reshape_1d(mat, m)
179 180 181 182 183 184 185 186 187

    for sub_mat in mat_flattern:
        if np.nonzero(sub_mat)[0].size > (m - n):
            return False
    return True


def get_mask_1d(mat, n, m):
    r"""
188 189
    Generate 1D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    in row-directory. This function would pad the second dimension of :attr:`mat`
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    by zero to be a multiples of :attr:`m` before mask generation.

    1D `n:m` sparse pattern: At least :attr:`n` zeros in every :math:`1 \times m` block.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[0, 1, 5, 4],
                          [2, 7, 3, 6]])
          mask = sparsity.get_mask_1d(mat, 2, 4)
          # nparray([[0, 0, 1, 1],
          #          [0, 1, 0, 1]])
          sparsity.check_mask_1d(mask, 2, 4) # True
    """
213
    mat_flattern, shape = _reshape_1d(mat, m)
214 215 216 217 218 219 220 221

    mask_flattern = np.ones_like(mat_flattern)
    mask = np.ones_like(mat)
    for i in range(mat_flattern.shape[0]):
        sub_mat = mat_flattern[i]
        min_order_indices = np.argsort(np.absolute(sub_mat))
        mask_flattern[i, min_order_indices[:n].tolist()] = 0
    mask_flattern = mask_flattern.reshape(shape)
222
    mask[:, :] = mask_flattern[:, : mat.shape[1]]
223 224 225
    return mask


226
def _reshape_2d(mat, m):
227
    r"""
228
    Reshape the input 2D matrix to shape (-1, :math:`m \times m`).
229
    In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`,
230 231 232 233 234 235 236 237
    then this function would pad the remainder with 0 before reshaping.

    .. math::

        remainder_0 = mat.shape[0] % m \\
        remainder_1 = mat.shape[1] % m

    Args:
238
        mat (nparray): The input 2D matrix.
239 240 241 242
        m (int): The square root of second dimension of reshaped matrix.
    Returns:
        tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
    """
243 244
    assert len(mat.shape) == 2, "The input mat should be a 2D matrix!"

245 246 247
    remainder_0 = mat.shape[0] % m
    remainder_1 = mat.shape[1] % m

248 249 250 251
    new_shape = (
        mat.shape[0] if remainder_0 == 0 else mat.shape[0] + (m - remainder_0),
        mat.shape[1] if remainder_1 == 0 else mat.shape[1] + (m - remainder_1),
    )
252
    mat_padded = np.zeros(new_shape)
253
    mat_padded[: mat.shape[0], : mat.shape[1]] = mat
254 255 256 257 258 259 260

    mat_flattern = np.empty(new_shape).reshape(-1, m * m)
    curr_idx = 0
    for row_start in range(0, mat_padded.shape[0], m):
        row_end = row_start + m
        for col_start in range(0, mat_padded.shape[1], m):
            col_end = col_start + m
261 262 263
            sub_mat = np.squeeze(
                mat_padded[row_start:row_end, col_start:col_end].reshape(-1)
            )
264 265 266 267 268 269 270 271
            mat_flattern[curr_idx] = sub_mat
            curr_idx += 1
    return mat_flattern, mat_padded.shape


def check_mask_2d(mat, n, m):
    r"""
    Check if every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern.
272
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of
273 274
    :attr:`m` if necessary.

275
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        bool: True if  every :math:`m \times m` block of the input matrix :attr:`mat` is in 2D `n:m` sparse pattern, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          x = np.array([[0, 8, 9, 0],
                        [9, 0, 0, 10],
                        [5, 0, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # True

          x = np.array([[0, 8, 0, 9],
                        [9, 0, 0, 10],
                        [0, 5, 0, 6],
                        [0, 4, 6, 0]])
          sparsity.check_mask_2d(x, 2, 4) # False

          # x would be padded to shape (8, 8)
          x = np.array([[0, 8, 0, 9],
                        [9, 0, 7, 0],
                        [0, 5, 0, 6],
                        [3, 0, 6, 0],
                        [1, 1, 0, 1]])
          sparsity.check_mask_2d(x, 2, 4) # True
    """
310
    mat_padded, shape = _reshape_2d(mat, m)
311 312
    for sub_mat in mat_padded:
        sub_mask = np.absolute(np.squeeze(sub_mat.reshape(m, m))) > 0
313 314 315
        if (np.sum(np.sum(sub_mask, axis=1) > (m - n)) != 0) and (
            np.sum(np.sum(sub_mask, axis=0) > (m - n)) != 0
        ):
316 317 318 319 320 321
            return False
    return True


def get_mask_2d_greedy(mat, n, m):
    r"""
322
    Greedily generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`.
323 324
    This function would pad each dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

325
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    under the constraint of at least :attr:`n` zeros for each row and column.
    Greedily generating: For each :math:`m \times m` block, selecting values to keep in descent order.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 2D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[9, 8, 3, 7],
                          [9, 2, 1, 10],
                          [5, 1, 3, 6],
                          [2, 4, 6, 1]])
          mask = sparsity.get_mask_2d_greedy(mat, 2, 4)
          # nparray([[1. 1. 0. 0.]
          #          [1. 0. 0. 1.]
          #          [0. 0. 1. 1.]
          #          [0. 1. 1. 0.]])
          sparsity.check_mask_2d(mask, 2, 4) # True
    """
352
    mat_padded, shape = _reshape_2d(mat, m)
353 354 355 356 357 358 359
    mask_padded = np.zeros_like(mat_padded).reshape(-1, m, m)

    for idx in range(len(mat_padded)):
        sub_mat = np.absolute(np.squeeze(mat_padded[idx]))
        sub_mask = np.squeeze(mask_padded[idx])

        min_order_1d_indices = np.argsort(sub_mat)
360 361 362
        min_order_2d_indices = [
            (int(x / m), x % m) for x in min_order_1d_indices
        ]
363 364 365 366 367
        row_counter = collections.Counter()
        col_counter = collections.Counter()

        for i in range(len(min_order_1d_indices) - 1, -1, -1):
            matrix_entry = min_order_2d_indices[i]
368 369 370
            if (row_counter[matrix_entry[0]] == n) or (
                col_counter[matrix_entry[1]] == n
            ):
371 372 373 374 375 376 377 378 379 380 381 382 383 384
                continue

            sub_mask[matrix_entry[0], matrix_entry[1]] = 1.0
            row_counter[matrix_entry[0]] += 1
            col_counter[matrix_entry[1]] += 1

    mask = np.empty(shape)
    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_padded[curr_idx]
            curr_idx += 1
385
    return mask[: mat.shape[0], : mat.shape[1]]
386 387


388 389
_valid_2d_patterns_lock = threading.Lock()
_valid_2d_patterns = {}
390 391


392
def _compute_valid_2d_patterns(n, m):
393 394 395
    r"""
    Compute all vaild 2D `n:m` sparse patterns.

396
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
397 398 399 400 401 402 403 404
    under the constraint of at least :attr:`n` zeros for each row and column.

    Args:
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
    """
405 406
    global _valid_2d_patterns_lock
    global _valid_2d_patterns
407 408

    valid_key = '{}_{}'.format(m, n)
409 410
    if valid_key in _valid_2d_patterns:
        return _valid_2d_patterns[valid_key]
411 412 413 414 415 416 417
    else:
        patterns = np.zeros(m)
        patterns[:n] = 1
        patterns = list(set(permutations(patterns.tolist())))
        patterns = patterns + patterns
        patterns = np.asarray(list(set(permutations(patterns, m))))

418 419 420 421 422
        valid = (
            ((patterns.sum(axis=1) <= n).sum(axis=1) == m)
            .nonzero()[0]
            .reshape(-1)
        )
423 424 425
        valid_patterns = np.empty((valid.shape[0], m, m))
        valid_patterns[:] = patterns[valid[:]]

426 427 428
        _valid_2d_patterns_lock.acquire()
        _valid_2d_patterns[valid_key] = valid_patterns
        _valid_2d_patterns_lock.release()
429 430 431 432 433 434

        return valid_patterns


def get_mask_2d_best(mat, n, m):
    r"""
435 436
    Generate 2D `n:m` sparse pattern mask of the input matrix :attr:`mat`
    to form sparse matrix with maximun L1 norm .This function would pad each
437 438
    dimension of :attr:`mat` by zero to be a multiples of :attr:`m` before mask generation.

439
    2D `n:m` sparse pattern: At least :math:`n \times n` zeros in every :math:`m \times m` block
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    under the constraint of at least :attr:`n` zeros for each row and column.

    *Note*: L1 norm of sparse matrix from `Best` API is greater than or equal to the one from `Greedy`.

    Args:
        mat (nparray): The input matrix.
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
    Returns:
        nparray: The 1D `n:m` sparse mask of :attr:`mat`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          mat = np.array([[2, 8, 9, 9],
                          [9, 1, 3, 9],
                          [5, 6, 3, 9],
                          [2, 4, 6, 9]])
          mask_greedy = sparsity.get_mask_2d_greedy(mat, 2, 4)
461
          mask_best = sparsity.get_mask_2d_best(mat, 2, 4)
462 463 464
          print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
          print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
    """
465
    patterns = _compute_valid_2d_patterns(n, m)
466

467
    mat_flattern, shape = _reshape_2d(mat, m)
468
    mask_flattern = np.ones_like(mat_flattern).reshape(-1, m, m)
469 470 471 472
    pmax = np.argmax(
        np.matmul(mat_flattern, patterns.reshape(patterns.shape[0], m * m).T),
        axis=1,
    )
473 474 475 476 477 478 479 480 481 482 483

    mask_flattern[:] = patterns[pmax[:]]
    mask = np.empty(shape)

    curr_idx = 0
    for row_start in range(0, shape[0], m):
        row_end = row_start + m
        for col_start in range(0, shape[1], m):
            col_end = col_start + m
            mask[row_start:row_end, col_start:col_end] = mask_flattern[curr_idx]
            curr_idx += 1
484
    return mask[: mat.shape[0], : mat.shape[1]]
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523


def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
    r"""
    Create `n:m` sparse pattern mask of the input tensor via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (MaskAlgo, optional): The function name to generate spase mask. Default is `MaskAlgo.MASK_1D`. All options please refer to `MaskAlgo`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        nparray: The `n:m` sparse mask of :attr:`tensor` generated by :attr:`func_name`.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          mask_2d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_2D_BEST)
          # nparray([[0 1 1 0],
          #          [1 0 0 1],
          #          [1 1 0 0],
          #          [0 0 1 1]])
    """
    shape = tensor.shape
    dtype = tensor.dtype
    t = tensor.astype(float)

524 525 526 527
    assert isinstance(func_name, MaskAlgo), (
        "func_name argumet of create_mask is only accepted as type MaskAlgo. "
        "But got {}".format(type(func_name))
    )
528 529 530 531 532 533 534
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
535
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
536
    elif len(shape) == 4:
537 538 539
        t = t.transpose([0, 1, 3, 2]).reshape(
            shape[0] * shape[1] * shape[3], shape[2]
        )
540
        mask = func(t, n=n, m=m)
541 542 543 544 545
        return (
            mask.reshape([shape[0], shape[1], shape[3], shape[2]])
            .transpose([0, 1, 3, 2])
            .astype(dtype)
        )
546
    else:
547 548 549 550
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
551 552 553

    mask = func(t, n=n, m=m)
    return mask.reshape(shape).astype(dtype)
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588


def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
    r"""
    Check if input tensor is in `n:m` sparse pattern via function given by :attr:`func_name`.
    Currently only support tensor with dimension less than or equal to 4.

    Args:
        tensor (nparray): The input tensor.
        func_name (CheckMethod, optional): The function name to generate spase mask. Default is `CheckMethod.CHECK_1D`. All options please refer to `CheckMethod`.
        n (int, optional): n of `n:m` sparse pattern. Default is 2.
        m (int, optional): m of `n:m` sparse pattern. Default is 4.
    Returns:
        bool: True if tensor pass checking of function given by :attr:`func_name`, else False.
    Examples:
        .. code-block:: python

          import numpy as np
          import paddle.fluid.contrib.sparsity as sparsity

          tensor = np.array([[2, 8, 9, 9],
                             [9, 1, 3, 9],
                             [5, 6, 3, 9],
                             [2, 4, 6, 9]])
          mask_1d = sparsity.create_mask(tensor, func_name=sparsity.MaskAlgo.MASK_1D)
          # nparray([[0 0 1 1],
          #          [1 0 0 1],
          #          [0 1 0 1],
          #          [0 0 1 1]])
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_1D) # True
          sparsity.check_sparsity(mask_1d, func_name=sparsity.CheckMethod.CHECK_2D) # False
    """
    shape = tensor.shape
    t = tensor.astype(float)

589 590 591 592
    assert type(func_name) == CheckMethod, (
        "func_name argumet of check_sparsity is only accepted as type CheckMethod. "
        "But got {}".format(type(func_name))
    )
593 594 595 596 597 598 599
    func = getattr(sys.modules[__name__], func_name.value, None)
    if len(shape) == 1:
        t = t.reshape(1, shape[0])
    elif len(shape) == 2:
        t = t.reshape(shape[0], shape[1])
    elif len(shape) == 3:
        t = t.reshape(shape[0] * shape[1], shape[2])
600
    # 4d-tensor conv (h, w, in, out) -> (h*w*out, in) in GemmConvKernel Op
601
    elif len(shape) == 4:
602 603 604
        t = t.transpose([0, 1, 3, 2]).reshape(
            [shape[0] * shape[1] * shape[3], shape[2]]
        )
605
    else:
606 607 608 609
        raise ValueError(
            "The dimension of input tensor is not supported in create_mask, "
            "Only dimension < 4 is supported but got {}".format(len(shape))
        )
610

611
    return func(t, n=n, m=m)